Intermediates in the catalytic cycle of copper-quinoprotein amine oxidase from Escherichia coli. 1996

V Steinebach, and S de Vries, and J A Duine
Kluyver Laboratory of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands.

Investigations on the reduction of copper quinoprotein amine oxidases (EC 1.4.3.6) by substrate indicate that the nature of the reduced enzyme species formed varies, as judged from the spectroscopic data reported in the literature for different enzymes and substrates. The availability of substantial amounts of overproduced, homogeneous Escherichia coli amine oxidase (ECAO) enabled us to investigate this aspect with a number of different approaches: quantitative titration of enzyme with substrate, stopped-flow kinetic spectrophotometry (anaerobic and semianaerobic), EPR spectroscopy of stable intermediates in the catalytic cycle, and conversions with H2O2 as the oxidant. Reduction of ECAO by a variety of substrates led to spectra (UV/Vis, EPR) identical to those that have been ascribed to the semiquinone form of the topaquinone cofactor. The extent of semiquinone formation was enhanced in the presence of KCN, but the properties of the artificially induced semiquinone were different from those of the spontaneously induced one, as shown by the spectroscopic data and the reactivity toward O2 and H2O2. On titrating ECAO at high concentrations with substrate, evidence was obtained that disproportionation takes place of the semiquinone formed, the reaction most probably proceeding via intermolecular electron transfer, leading to a topaquinone- and Cu1+-containing enzyme species that is able to perform substrate conversion. The latter, as well as OH*, is probably also formed when H2O2 replaces O2 as oxidant, explaining why substrate conversion with concomitant enzyme inactivation occurs under this condition. Formation of the semiquinone was always preceded by that of a hitherto unknown species with an absorbance maximum at 400 nm. The structure proposed for this species is a protonated form of the aminoquinol cofactor, the Zwitter ionic structure being stabilized by amino acid residues in the active site having opposite charges. Based on the properties observed and the moment of appearance during conversions, a proposal is made for the sequence in which the three reduced enzyme species convert into each other.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010627 Phenethylamines A group of compounds that are derivatives of beta- aminoethylbenzene which is structurally and pharmacologically related to amphetamine. (From Merck Index, 11th ed) Phenylethylamines
D011190 Potassium Cyanide A highly poisonous compound that is an inhibitor of many metabolic processes, but has been shown to be an especially potent inhibitor of heme enzymes and hemeproteins. It is used in many industrial processes. Potassium Cyanide (K(14)CN),Potassium Cyanide (K(C(15)N)),Cyanide, Potassium
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002384 Catalysis The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction. Catalyses
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006631 Amine Oxidase (Copper-Containing) A group of enzymes including those oxidizing primary monoamines, diamines, and histamine. They are copper proteins, and, as their action depends on a carbonyl group, they are sensitive to inhibition by semicarbazide. Diamine Oxidase,Histaminase,Amine Oxidase, Copper-Containing,Copper Amine Oxidase,Diaminobenzidine Oxidase,Semicarbazide-Sensitive Amine Oxidase,Xylylene Diamine Oxidase,Amine Oxidase, Copper,Amine Oxidase, Copper Containing,Amine Oxidase, Semicarbazide-Sensitive,Copper-Containing Amine Oxidase,Diamine Oxidase, Xylylene,Oxidase, Copper Amine,Oxidase, Copper-Containing Amine,Oxidase, Diamine,Oxidase, Diaminobenzidine,Oxidase, Semicarbazide-Sensitive Amine,Oxidase, Xylylene Diamine,Semicarbazide Sensitive Amine Oxidase
D006861 Hydrogen Peroxide A strong oxidizing agent used in aqueous solution as a ripening agent, bleach, and topical anti-infective. It is relatively unstable and solutions deteriorate over time unless stabilized by the addition of acetanilide or similar organic materials. Hydrogen Peroxide (H2O2),Hydroperoxide,Oxydol,Perhydrol,Superoxol,Peroxide, Hydrogen
D000693 Anaerobiosis The complete absence, or (loosely) the paucity, of gaseous or dissolved elemental oxygen in a given place or environment. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Anaerobic Metabolism,Anaerobic Metabolisms,Anaerobioses,Metabolism, Anaerobic,Metabolisms, Anaerobic

Related Publications

V Steinebach, and S de Vries, and J A Duine
June 1998, The Biochemical journal,
V Steinebach, and S de Vries, and J A Duine
December 1986, European journal of biochemistry,
V Steinebach, and S de Vries, and J A Duine
September 2018, Biochemistry,
V Steinebach, and S de Vries, and J A Duine
February 2010, Biochemistry,
V Steinebach, and S de Vries, and J A Duine
May 1994, Journal of molecular biology,
V Steinebach, and S de Vries, and J A Duine
January 2011, Journal of synchrotron radiation,
V Steinebach, and S de Vries, and J A Duine
January 1999, Proceedings of the National Academy of Sciences of the United States of America,
V Steinebach, and S de Vries, and J A Duine
October 2001, Biochemistry,
Copied contents to your clipboard!