Inhibitory interactions between two inward rectifier K+ channel subunits mediated by the transmembrane domains. 1996

S J Tucker, and C T Bond, and P Herson, and M Pessia, and J P Adelman
Vollum Institute for Advanced Biomedical Research, Oregon Health Sciences University, Portland, Oregon 97201, USA.

Inwardly rectifying K+ channel subunits may form homomeric or heteromeric channels with distinct functional properties. Hyperpolarizing commands delivered to Xenopus oocytes expressing homomeric Kir 4.1 channels evoke inwardly rectifying K+ currents which activate rapidly and undergo a pronounced decay at more hyperpolarized potentials. In addition, Kir 4.1 subunits form heteromeric channels when coexpressed with several other inward rectifier subunits. However, coexpression of Kir 4.1 with Kir 3.4 causes an inhibition of the Kir 4.1 current. We have investigated this inhibitory effect and show that it is mediated by interactions between the predicted transmembrane domains of the two subunit classes. Other subunits within the Kir 3.0 family also exhibit this inhibitory effect which can be used to define subgroups of the inward rectifier family. Further, the mechanism of inhibition is likely due to the formation of an "inviable complex" which becomes degraded, rather than by formation of stable nonconductive heteromeric channels. These results provide insight into the assembly and regulation of inwardly rectifying K+ channels and the domains which define their interactions.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009865 Oocytes Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM). Ovocytes,Oocyte,Ovocyte
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor

Related Publications

S J Tucker, and C T Bond, and P Herson, and M Pessia, and J P Adelman
January 2002, Trends in cardiovascular medicine,
S J Tucker, and C T Bond, and P Herson, and M Pessia, and J P Adelman
January 1996, FEBS letters,
S J Tucker, and C T Bond, and P Herson, and M Pessia, and J P Adelman
October 2000, The Journal of biological chemistry,
S J Tucker, and C T Bond, and P Herson, and M Pessia, and J P Adelman
September 2007, The Journal of general physiology,
S J Tucker, and C T Bond, and P Herson, and M Pessia, and J P Adelman
May 1995, Neuron,
S J Tucker, and C T Bond, and P Herson, and M Pessia, and J P Adelman
November 2009, The Journal of pharmacology and experimental therapeutics,
S J Tucker, and C T Bond, and P Herson, and M Pessia, and J P Adelman
November 2012, The Journal of general physiology,
S J Tucker, and C T Bond, and P Herson, and M Pessia, and J P Adelman
April 1997, Biophysical journal,
S J Tucker, and C T Bond, and P Herson, and M Pessia, and J P Adelman
January 1996, Neuropharmacology,
S J Tucker, and C T Bond, and P Herson, and M Pessia, and J P Adelman
April 1998, Biophysical journal,
Copied contents to your clipboard!