A mutant yeast deficient in Golgi transport of uridine diphosphate N-acetylglucosamine. 1996

C Abeijon, and E C Mandon, and P W Robbins, and C B Hirschberg
Department of Biochemistry and Molecular Biology, University of Massachusetts Medical Center, Worcester, Massachusetts 01655, USA.

Mannan chains of Kluyveromyces lactis mannoproteins are similar to those of Saccharomyces cerevisiae except that they have terminal alpha1-->2-linked N-acetylglucosamine and lack mannose phosphate. In a previous study, Douglas and Ballou (Douglas, R. K., and Ballou, C. E. (1982) Biochemistry 21, 1561-1570) characterized a mutant, mnn2-2, which lacked terminal N-acetylglucosamine in its mannoproteins. The mutant had normal levels of N-acetylglucosaminyltransferase activity, and the partially purified enzyme from wild-type and mutant cells had the same apparent size, heat stability, affinity for substrates, metal requirement, and subcellular location. No qualitative or quantitative differences were found between mutant and wild-type cells in endogenous mannan acceptors and pools of UDP-GlcNAc. Chitin was synthesized at similar rates in wild-type and mutant cells, and the latter did not have a soluble inhibitor of the N-acetylglucosaminyltransferase or a hexosaminidase that could remove N-acetylglucosamine from mannoproteins. Together, the above observations led Douglas and Ballou ((1982) Biochemistry 21, 1561-1570) to postulate that the mutant might have a defect in compartmentation of substrates involved in the biosynthesis of mannoproteins. We determined whether the above mutant phenotype is the result of defective transport of UDP-GlcNAc into Golgi vesicles from K. lactis. Golgi vesicles which were sealed and of the same membrane topographical orientation as in vivo were isolated from wild-type and mnn2-2 mutant cells and incubated with UDP-GlcNAc in an assay in vitro. The initial rate of transport of UDP-GlcNAc into Golgi vesicles from wild-type cells was temperature dependent, saturable with an apparent Km of 5.5 microM and a Vmax of 8.2 pmol/mg of protein/3 min. No transport of UDP-GlcNAc was detected into Golgi vesicles from mutant cells. However, Golgi vesicles from both cells translocated GDP-mannose at comparable velocities, indicating that the above transport defect is specific. In addition to the above defect in mannoproteins, mutant cells were also deficient in the biosynthesis of glucosamine containing lipids.

UI MeSH Term Description Entries
D007716 Kluyveromyces An ascomycetous yeast of the fungal family Saccharomycetaceae, order SACCHAROMYCETALES. Kluyveromyce
D008562 Membrane Glycoproteins Glycoproteins found on the membrane or surface of cells. Cell Surface Glycoproteins,Surface Glycoproteins,Cell Surface Glycoprotein,Membrane Glycoprotein,Surface Glycoprotein,Glycoprotein, Cell Surface,Glycoprotein, Membrane,Glycoprotein, Surface,Glycoproteins, Cell Surface,Glycoproteins, Membrane,Glycoproteins, Surface,Surface Glycoprotein, Cell,Surface Glycoproteins, Cell
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D005656 Fungal Proteins Proteins found in any species of fungus. Fungal Gene Products,Fungal Gene Proteins,Fungal Peptides,Gene Products, Fungal,Yeast Proteins,Gene Proteins, Fungal,Peptides, Fungal,Proteins, Fungal
D005800 Genes, Fungal The functional hereditary units of FUNGI. Fungal Genes,Fungal Gene,Gene, Fungal
D006017 Glycolipids Any compound containing one or more monosaccharide residues bound by a glycosidic linkage to a hydrophobic moiety such as an acylglycerol (see GLYCERIDES), a sphingoid, a ceramide (CERAMIDES) (N-acylsphingoid) or a prenyl phosphate. (From IUPAC's webpage) Glycolipid
D006056 Golgi Apparatus A stack of flattened vesicles that functions in posttranslational processing and sorting of proteins, receiving them from the rough ENDOPLASMIC RETICULUM and directing them to secretory vesicles, LYSOSOMES, or the CELL MEMBRANE. The movement of proteins takes place by transfer vesicles that bud off from the rough endoplasmic reticulum or Golgi apparatus and fuse with the Golgi, lysosomes or cell membrane. (From Glick, Glossary of Biochemistry and Molecular Biology, 1990) Golgi Complex,Apparatus, Golgi,Complex, Golgi
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures
D014537 Uridine Diphosphate N-Acetylglucosamine Serves as the biological precursor of insect chitin, of muramic acid in bacterial cell walls, and of sialic acids in mammalian glycoproteins. UDP Acetylglucosamine,UDPGNAc,Uridine Diphospho-N-Acetylglucosamine,Uridine Pyrophosphoacetylglucosamine,Uridine Diphosphate N Acetylglucosamine,Acetylglucosamine, UDP,Diphosphate N-Acetylglucosamine, Uridine,Diphospho-N-Acetylglucosamine, Uridine,N-Acetylglucosamine, Uridine Diphosphate,Pyrophosphoacetylglucosamine, Uridine,Uridine Diphospho N Acetylglucosamine

Related Publications

C Abeijon, and E C Mandon, and P W Robbins, and C B Hirschberg
December 2000, Journal of hepatology,
C Abeijon, and E C Mandon, and P W Robbins, and C B Hirschberg
August 1953, The Journal of biological chemistry,
C Abeijon, and E C Mandon, and P W Robbins, and C B Hirschberg
June 1996, Proceedings of the National Academy of Sciences of the United States of America,
C Abeijon, and E C Mandon, and P W Robbins, and C B Hirschberg
February 1981, Applied and environmental microbiology,
C Abeijon, and E C Mandon, and P W Robbins, and C B Hirschberg
February 1973, Biochimica et biophysica acta,
C Abeijon, and E C Mandon, and P W Robbins, and C B Hirschberg
June 1955, Biochimica et biophysica acta,
C Abeijon, and E C Mandon, and P W Robbins, and C B Hirschberg
September 1957, The Journal of biological chemistry,
C Abeijon, and E C Mandon, and P W Robbins, and C B Hirschberg
February 1959, Biochimica et biophysica acta,
C Abeijon, and E C Mandon, and P W Robbins, and C B Hirschberg
May 2015, Acta crystallographica. Section F, Structural biology communications,
C Abeijon, and E C Mandon, and P W Robbins, and C B Hirschberg
September 2009, Applied microbiology and biotechnology,
Copied contents to your clipboard!