Induction of ferritin synthesis in cells infected with Mengo virus. 1996

M R Mulvey, and L C Kühn, and D G Scraba
Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada.

We have recently identified ferritin as a cellular protein particle whose synthesis is stimulated in mouse or human cells infected by the picornavirus Mengo. Immunoprecipitation of the particle from infected murine L929 cells showed a 4- and 6-fold increase in the intracellular concentrations of H and L apoferritin subunits, respectively. This differential expression altered the H/L subunit ratio from 3.0 in uninfected cells to 2.2 in Mengo virus-infected cells. The induction is not due to an increase in transcription of the apoferritin L and H genes, nor is it due to an increase in stability of the apoferritin mRNAs. At the level of translation, the iron regulatory protein (IRP) remained intact, with similar amounts being detected in uninfected and infected cells. The Mengo virus RNA genome does not compete with the iron regulatory element (IRE) for the binding of IRP, and sequence analysis confirmed that there are no IREs in the virus RNA. The IRE binding activity of IRP in infected cells decreased approximately 30% compared with uninfected cells. The decrease in binding activity could be overcome by the addition of Desferal (deferoxamine mesylate; CIBA) an intracellular iron chelator, which suggests that virus infection causes an increase in intracellular free iron. Electron paramagnetic resonance (EPR) studies have confirmed the increase in free iron in Mengo virus infected cells. The permeability of cells for iron does not change in virus infected cells, suggesting that the induction of ferritin by Mengo virus is due to a change in the form of intracellular iron from a bound to a free state.

UI MeSH Term Description Entries
D007501 Iron A metallic element with atomic symbol Fe, atomic number 26, and atomic weight 55.85. It is an essential constituent of HEMOGLOBINS; CYTOCHROMES; and IRON-BINDING PROTEINS. It plays a role in cellular redox reactions and in the transport of OXYGEN. Iron-56,Iron 56
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007739 L Cells A cultured line of C3H mouse FIBROBLASTS that do not adhere to one another and do not express CADHERINS. Earle's Strain L Cells,L Cell Line,L Cells (Cell Line),L-Cell Line,L-Cells,L-Cells, Cell Line,L929 Cell Line,L929 Cells,NCTC Clone 929 Cells,NCTC Clone 929 of Strain L Cells,Strain L Cells,Cell Line L-Cell,Cell Line L-Cells,Cell Line, L,Cell Line, L929,Cell Lines, L,Cell, L,Cell, L (Cell Line),Cell, L929,Cell, Strain L,Cells, L,Cells, L (Cell Line),Cells, L929,Cells, Strain L,L Cell,L Cell (Cell Line),L Cell Lines,L Cell, Strain,L Cells, Cell Line,L Cells, Strain,L-Cell,L-Cell Lines,L-Cell, Cell Line,L929 Cell,Strain L Cell
D008574 Mengovirus A strain of ENCEPHALOMYOCARDITIS VIRUS, a species of CARDIOVIRUS, isolated from rodents and lagomorphs and occasionally causing febrile illness in man. Mengo Virus,Virus, Mengo
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D002614 Chelating Agents Chemicals that bind to and remove ions from solutions. Many chelating agents function through the formation of COORDINATION COMPLEXES with METALS. Chelating Agent,Chelator,Complexons,Metal Antagonists,Chelators,Metal Chelating Agents,Agent, Chelating,Agents, Chelating,Agents, Metal Chelating,Antagonists, Metal,Chelating Agents, Metal
D003676 Deferoxamine Natural product isolated from Streptomyces pilosus. It forms iron complexes and is used as a chelating agent, particularly in the mesylate form. Desferrioxamine,Deferoxamine B,Deferoxamine Mesilate,Deferoxamine Mesylate,Deferoxamine Methanesulfonate,Deferoximine,Deferrioxamine B,Desferal,Desferioximine,Desferrioxamine B,Desferrioxamine B Mesylate,Desferroxamine,Mesilate, Deferoxamine,Mesylate, Deferoxamine,Mesylate, Desferrioxamine B,Methanesulfonate, Deferoxamine
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D005293 Ferritins Iron-containing proteins that are widely distributed in animals, plants, and microorganisms. Their major function is to store IRON in a nontoxic bioavailable form. Each ferritin molecule consists of ferric iron in a hollow protein shell (APOFERRITINS) made of 24 subunits of various sequences depending on the species and tissue types. Basic Isoferritin,Ferritin,Isoferritin,Isoferritin, Basic
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression

Related Publications

M R Mulvey, and L C Kühn, and D G Scraba
October 1963, Journal of cellular and comparative physiology,
M R Mulvey, and L C Kühn, and D G Scraba
August 1982, Biochemical and biophysical research communications,
M R Mulvey, and L C Kühn, and D G Scraba
April 1966, Proceedings of the National Academy of Sciences of the United States of America,
M R Mulvey, and L C Kühn, and D G Scraba
January 1977, Zeitschrift fur allgemeine Mikrobiologie,
M R Mulvey, and L C Kühn, and D G Scraba
June 1961, Virology,
M R Mulvey, and L C Kühn, and D G Scraba
October 1959, Journal of bacteriology,
M R Mulvey, and L C Kühn, and D G Scraba
April 1997, Archives of biochemistry and biophysics,
M R Mulvey, and L C Kühn, and D G Scraba
May 1978, The Journal of biological chemistry,
Copied contents to your clipboard!