Self-organized phase transitions in neural networks as a neural mechanism of information processing. 1996

O Hoshino, and Y Kashimori, and T Kambara
Department of Applied Physics and Chemistry, The University of Electro-Communications, Tokyo, Japan.

Transitions between dynamically stable activity patterns imposed on an associative neural network are shown to be induced by self-organized infinitesimal changes in synaptic connection strength and to be a kind of phase transition. A key event for the neural process of information processing in a population coding scheme is transition between the activity patterns encoding usual entities. We propose that the infinitesimal and short-term synaptic changes based on the Hebbian learning rule are the driving force for the transition. The phase transition between the following two dynamical stable states is studied in detail, the state where the firing pattern is changed temporally so as to itinerate among several patterns and the state where the firing pattern is fixed to one of several patterns. The phase transition from the pattern itinerant state to a pattern fixed state may be induced by the Hebbian learning process under a weak input relevant to the fixed pattern. The reverse transition may be induced by the Hebbian unlearning process without input. The former transition is considered as recognition of the input stimulus, while the latter is considered as clearing of the used input data to get ready for new input. To ensure that information processing based on the phase transition can be made by the infinitesimal and short-term synaptic changes, it is absolutely necessary that the network always stays near the critical state corresponding to the phase transition point.

UI MeSH Term Description Entries
D007858 Learning Relatively permanent change in behavior that is the result of past experience or practice. The concept includes the acquisition of knowledge. Phenomenography
D008959 Models, Neurological Theoretical representations that simulate the behavior or activity of the neurological system, processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Neurologic Models,Model, Neurological,Neurologic Model,Neurological Model,Neurological Models,Model, Neurologic,Models, Neurologic
D009415 Nerve Net A meshlike structure composed of interconnecting nerve cells that are separated at the synaptic junction or joined to one another by cytoplasmic processes. In invertebrates, for example, the nerve net allows nerve impulses to spread over a wide area of the net because synapses can pass information in any direction. Neural Networks (Anatomic),Nerve Nets,Net, Nerve,Nets, Nerve,Network, Neural (Anatomic),Networks, Neural (Anatomic),Neural Network (Anatomic)
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D016571 Neural Networks, Computer A computer architecture, implementable in either hardware or software, modeled after biological neural networks. Like the biological system in which the processing capability is a result of the interconnection strengths between arrays of nonlinear processing nodes, computerized neural networks, often called perceptrons or multilayer connectionist models, consist of neuron-like units. A homogeneous group of units makes up a layer. These networks are good at pattern recognition. They are adaptive, performing tasks by example, and thus are better for decision-making than are linear learning machines or cluster analysis. They do not require explicit programming. Computational Neural Networks,Connectionist Models,Models, Neural Network,Neural Network Models,Neural Networks (Computer),Perceptrons,Computational Neural Network,Computer Neural Network,Computer Neural Networks,Connectionist Model,Model, Connectionist,Model, Neural Network,Models, Connectionist,Network Model, Neural,Network Models, Neural,Network, Computational Neural,Network, Computer Neural,Network, Neural (Computer),Networks, Computational Neural,Networks, Computer Neural,Networks, Neural (Computer),Neural Network (Computer),Neural Network Model,Neural Network, Computational,Neural Network, Computer,Neural Networks, Computational,Perceptron

Related Publications

O Hoshino, and Y Kashimori, and T Kambara
November 2016, Scientific reports,
O Hoshino, and Y Kashimori, and T Kambara
June 2003, Physical review. E, Statistical, nonlinear, and soft matter physics,
O Hoshino, and Y Kashimori, and T Kambara
January 2017, Frontiers in computational neuroscience,
O Hoshino, and Y Kashimori, and T Kambara
February 2014, Mathematical biosciences and engineering : MBE,
O Hoshino, and Y Kashimori, and T Kambara
January 1991, Physical review. A, Atomic, molecular, and optical physics,
O Hoshino, and Y Kashimori, and T Kambara
January 2013, Journal of the Royal Society, Interface,
O Hoshino, and Y Kashimori, and T Kambara
August 2021, Neural networks : the official journal of the International Neural Network Society,
O Hoshino, and Y Kashimori, and T Kambara
May 1996, Network (Bristol, England),
O Hoshino, and Y Kashimori, and T Kambara
June 2016, Physical review letters,
O Hoshino, and Y Kashimori, and T Kambara
April 1992, Physical review. A, Atomic, molecular, and optical physics,
Copied contents to your clipboard!