Calpain inhibitor AK295 attenuates motor and cognitive deficits following experimental brain injury in the rat. 1996

K E Saatman, and H Murai, and R T Bartus, and D H Smith, and N J Hayward, and B R Perri, and T K McIntosh
Division of Neurosurgery, University of Pennsylvania, Philadelphia 19104, USA.

Marked increases in intracellular calcium may play a role in mediating cellular dysfunction and death following central nervous system trauma, in part through the activation of the calcium-dependent neutral protease calpain. In this study, we evaluated the effect of the calpain inhibitor AK295 [Z-Leu-aminobutyric acid-CONH(CH2)3-morpholine] on cognitive and motor deficits following lateral fluid percussion brain injury in rats. Before injury, male Sprague-Dawley rats (350-425 g) were trained to perform a beam-walking task and to learn a cognitive test using a Morris water maze paradigm. Animals were subjected to fluid percussion injury (2.2-2.4 atm; 1 atm = 101.3 kPa) and, beginning at 15 min postinjury, received a continuous intraarterial infusion of AK295 (120-140 mg/kg, n = 15) or vehicle (n= 16) for 48 hr. Sham (uninjured) animals received either drug (n = 5) or vehicle (n = 10). Animals were evaluated for neurobehavioral motor function at 48 hr and 7 days postinjury and were tested in the Morris water maze to evaluate memory retention at 7 days postinjury. At 48 hr, both vehicle- and AK295-treated injured animals showed significant neuromotor deficits (P< 0.005). At 7 days, injured animals that received vehicle continued to exhibit significant motor dysfunction (P< 0.01). However, brain-injured, AK295-treated animals showed markedly improved motor scores (P<0.02), which were not significantly different from sham (uninjured) animals. Vehicle-treated, injured animals demonstrated a profound cognitive deficit (P< 0.001), which was significantly attenuated by AK295 treatment (P< 0.05). To our knowledge, this study is the first to use a calpain inhibitor following brain trauma and suggests that calpain plays a role in the posttraumatic events underlying memory and neuromotor dysfunction.

UI MeSH Term Description Entries
D008297 Male Males
D008568 Memory Complex mental function having four distinct phases: (1) memorizing or learning, (2) retention, (3) recall, and (4) recognition. Clinically, it is usually subdivided into immediate, recent, and remote memory.
D011597 Psychomotor Performance The coordination of a sensory or ideational (cognitive) process and a motor activity. Perceptual Motor Performance,Sensory Motor Performance,Visual Motor Coordination,Coordination, Visual Motor,Coordinations, Visual Motor,Motor Coordination, Visual,Motor Coordinations, Visual,Motor Performance, Perceptual,Motor Performance, Sensory,Motor Performances, Perceptual,Motor Performances, Sensory,Perceptual Motor Performances,Performance, Perceptual Motor,Performance, Psychomotor,Performance, Sensory Motor,Performances, Perceptual Motor,Performances, Psychomotor,Performances, Sensory Motor,Psychomotor Performances,Sensory Motor Performances,Visual Motor Coordinations
D001930 Brain Injuries Acute and chronic (see also BRAIN INJURIES, CHRONIC) injuries to the brain, including the cerebral hemispheres, CEREBELLUM, and BRAIN STEM. Clinical manifestations depend on the nature of injury. Diffuse trauma to the brain is frequently associated with DIFFUSE AXONAL INJURY or COMA, POST-TRAUMATIC. Localized injuries may be associated with NEUROBEHAVIORAL MANIFESTATIONS; HEMIPARESIS, or other focal neurologic deficits. Brain Lacerations,Acute Brain Injuries,Brain Injuries, Acute,Brain Injuries, Focal,Focal Brain Injuries,Injuries, Acute Brain,Injuries, Brain,Acute Brain Injury,Brain Injury,Brain Injury, Acute,Brain Injury, Focal,Brain Laceration,Focal Brain Injury,Injuries, Focal Brain,Injury, Acute Brain,Injury, Brain,Injury, Focal Brain,Laceration, Brain,Lacerations, Brain
D002154 Calpain Cysteine proteinase found in many tissues. Hydrolyzes a variety of endogenous proteins including NEUROPEPTIDES; CYTOSKELETAL PROTEINS; proteins from SMOOTH MUSCLE; CARDIAC MUSCLE; liver; platelets; and erythrocytes. Two subclasses having high and low calcium sensitivity are known. Removes Z-discs and M-lines from myofibrils. Activates phosphorylase kinase and cyclic nucleotide-independent protein kinase. This enzyme was formerly listed as EC 3.4.22.4. Calcium-Activated Neutral Protease,Calcium-Dependent Neutral Proteinase,Ca2+-Activated Protease,Calcium-Activated Neutral Proteinase,Calcium-Activated Protease,Calcium-Dependent Neutral Protease,Calpain I,Calpain II,Desminase,Ca2+ Activated Protease,Calcium Activated Neutral Protease,Calcium Activated Neutral Proteinase,Calcium Activated Protease,Calcium Dependent Neutral Protease,Calcium Dependent Neutral Proteinase,Neutral Protease, Calcium-Activated,Neutral Protease, Calcium-Dependent,Neutral Proteinase, Calcium-Activated,Neutral Proteinase, Calcium-Dependent,Protease, Ca2+-Activated,Protease, Calcium-Activated,Protease, Calcium-Activated Neutral,Protease, Calcium-Dependent Neutral,Proteinase, Calcium-Activated Neutral,Proteinase, Calcium-Dependent Neutral
D003072 Cognition Disorders Disorders characterized by disturbances in mental processes related to learning, thinking, reasoning, and judgment. Overinclusion,Disorder, Cognition,Disorders, Cognition
D004151 Dipeptides Peptides composed of two amino acid units. Dipeptide
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015853 Cysteine Proteinase Inhibitors Exogenous and endogenous compounds which inhibit CYSTEINE ENDOPEPTIDASES. Acid Cysteine Proteinase Inhibitor,Cysteine Protease Inhibitor,Cysteine Protease Inhibitors,Cysteine Proteinase Antagonist,Cysteine Proteinase Antagonists,Cysteine Proteinase Inhibitor,Cysteine Proteinase Inhibitors, Endogenous,Cysteine Proteinase Inhibitors, Exogenous,alpha-Cysteine Protease Inhibitor,Acid Cysteine Proteinase Inhibitors,alpha-Cysteine Protease Inhibitors,Antagonist, Cysteine Proteinase,Antagonists, Cysteine Proteinase,Inhibitor, Cysteine Protease,Inhibitor, Cysteine Proteinase,Inhibitor, alpha-Cysteine Protease,Inhibitors, Cysteine Protease,Inhibitors, Cysteine Proteinase,Inhibitors, alpha-Cysteine Protease,Protease Inhibitor, Cysteine,Protease Inhibitor, alpha-Cysteine,Protease Inhibitors, Cysteine,Protease Inhibitors, alpha-Cysteine,Proteinase Antagonist, Cysteine,Proteinase Antagonists, Cysteine,Proteinase Inhibitor, Cysteine,Proteinase Inhibitors, Cysteine,alpha Cysteine Protease Inhibitor,alpha Cysteine Protease Inhibitors

Related Publications

K E Saatman, and H Murai, and R T Bartus, and D H Smith, and N J Hayward, and B R Perri, and T K McIntosh
January 2020, American journal of translational research,
K E Saatman, and H Murai, and R T Bartus, and D H Smith, and N J Hayward, and B R Perri, and T K McIntosh
February 1997, Journal of neurotrauma,
K E Saatman, and H Murai, and R T Bartus, and D H Smith, and N J Hayward, and B R Perri, and T K McIntosh
February 2002, Brain research,
K E Saatman, and H Murai, and R T Bartus, and D H Smith, and N J Hayward, and B R Perri, and T K McIntosh
April 1997, Neuroscience,
K E Saatman, and H Murai, and R T Bartus, and D H Smith, and N J Hayward, and B R Perri, and T K McIntosh
December 1996, Journal of neurotrauma,
K E Saatman, and H Murai, and R T Bartus, and D H Smith, and N J Hayward, and B R Perri, and T K McIntosh
January 2002, Neuroscience,
K E Saatman, and H Murai, and R T Bartus, and D H Smith, and N J Hayward, and B R Perri, and T K McIntosh
July 2018, The journal of trauma and acute care surgery,
K E Saatman, and H Murai, and R T Bartus, and D H Smith, and N J Hayward, and B R Perri, and T K McIntosh
January 2021, Journal of molecular neuroscience : MN,
K E Saatman, and H Murai, and R T Bartus, and D H Smith, and N J Hayward, and B R Perri, and T K McIntosh
July 2004, Neuroscience and biobehavioral reviews,
K E Saatman, and H Murai, and R T Bartus, and D H Smith, and N J Hayward, and B R Perri, and T K McIntosh
August 2020, Experimental neurology,
Copied contents to your clipboard!