Complex assembly of calgranulins A and B, two S100-like calcium-binding proteins from pig granulocytes. 1996

E C Dell'Angelica, and C H Schleicher, and R J Simpson, and J A Santome
Instituto de Quimica y Fisicoquímica Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina.

Calgranulin A (CAGA) and calgranulin B (CAGB) are two S100-like calcium-binding proteins that in human, bovine and mouse granulocytes are associated into a heterocomplex. We have previously identified in pig granulocytes the porcine homologue of CAGA and a novel S100-like protein which was named calgranulin C (CAGC). As pig CAGA is not associated with CAGC, we herein investigate its possible association with other proteins. CAGA was purified from pig granulocytes by gel filtration followed by Mono Q chromatography. The purified fractions were analysed by SDS-polyacrylamide gel electrophoresis, isoelectric focusing, mass spectrometry, chemical cross-linking and hydrophobic interaction chromatography. The CAGA-associated protein was further characterized by amino acid sequencing. Two CAGA-containing fractions were isolated. One of them was identified as a CAGA homodimer. The other fraction consists of a heterocomplex containing CAGA and a pI 7.0 calcium-binding protein; this protein has a molecular mass of 15,877.9 +/- 3.8 Da (mean +/- SD) whereas it migrates on 10 and 16% polyacrylamide gels as a 24- and 20-kDa protein, respectively. The pI 7.0 protein was identified by internal amino acid sequencing as the porcine homologue of CAGB. The stoichiometry of the heterocomplex was estimated to be 1:1. Both the CAGA homodimer and CAGA/CAGB were found to be non-covalently associated. Unlike the homodimer, CAGA/CAGB was bound to a Phenyl Superose column in a calcium-dependent manner. Our results suggest that pig granulocytes contain, in addition to CAGC, a CAGA homodimer and a CAGA/CAGB heterodimer. It is proposed that CAGB/CAGB and the CAGA homodimer may play different roles in vivo.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009418 S100 Proteins A family of highly acidic calcium-binding proteins found in large concentration in the brain and believed to be glial in origin. They are also found in other organs in the body. They have in common the EF-hand motif (EF HAND MOTIFS) found on a number of calcium binding proteins. The name of this family derives from the property of being soluble in a 100% saturated ammonium sulfate solution. Antigen S 100,Nerve Tissue Protein S 100,S100 Protein,S-100 Protein,S100 Protein Family,Protein, S100,S 100 Protein
D002135 Calcium-Binding Proteins Proteins to which calcium ions are bound. They can act as transport proteins, regulator proteins, or activator proteins. They typically contain EF HAND MOTIFS. Calcium Binding Protein,Calcium-Binding Protein,Calcium Binding Proteins,Binding Protein, Calcium,Binding Proteins, Calcium,Protein, Calcium Binding,Protein, Calcium-Binding
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D006098 Granulocytes Leukocytes with abundant granules in the cytoplasm. They are divided into three groups according to the staining properties of the granules: neutrophilic, eosinophilic, and basophilic. Mature granulocytes are the NEUTROPHILS; EOSINOPHILS; and BASOPHILS. Granulocyte
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013552 Swine Any of various animals that constitute the family Suidae and comprise stout-bodied, short-legged omnivorous mammals with thick skin, usually covered with coarse bristles, a rather long mobile snout, and small tail. Included are the genera Babyrousa, Phacochoerus (wart hogs), and Sus, the latter containing the domestic pig (see SUS SCROFA). Phacochoerus,Pigs,Suidae,Warthogs,Wart Hogs,Hog, Wart,Hogs, Wart,Wart Hog
D046911 Macromolecular Substances Compounds and molecular complexes that consist of very large numbers of atoms and are generally over 500 kDa in size. In biological systems macromolecular substances usually can be visualized using ELECTRON MICROSCOPY and are distinguished from ORGANELLES by the lack of a membrane structure. Macromolecular Complexes,Macromolecular Compounds,Macromolecular Compounds and Complexes,Complexes, Macromolecular,Compounds, Macromolecular,Substances, Macromolecular

Related Publications

E C Dell'Angelica, and C H Schleicher, and R J Simpson, and J A Santome
March 1997, Acta crystallographica. Section D, Biological crystallography,
E C Dell'Angelica, and C H Schleicher, and R J Simpson, and J A Santome
January 2012, Frontiers in pharmacology,
E C Dell'Angelica, and C H Schleicher, and R J Simpson, and J A Santome
April 1992, Biochimica et biophysica acta,
E C Dell'Angelica, and C H Schleicher, and R J Simpson, and J A Santome
November 1998, Journal of cutaneous pathology,
E C Dell'Angelica, and C H Schleicher, and R J Simpson, and J A Santome
May 2019, The FEBS journal,
E C Dell'Angelica, and C H Schleicher, and R J Simpson, and J A Santome
October 2020, Journal of dermatological science,
E C Dell'Angelica, and C H Schleicher, and R J Simpson, and J A Santome
November 2021, Expert opinion on therapeutic patents,
E C Dell'Angelica, and C H Schleicher, and R J Simpson, and J A Santome
January 2019, Methods in molecular biology (Clifton, N.J.),
E C Dell'Angelica, and C H Schleicher, and R J Simpson, and J A Santome
May 1996, The Journal of investigative dermatology,
E C Dell'Angelica, and C H Schleicher, and R J Simpson, and J A Santome
October 1998, The EMBO journal,
Copied contents to your clipboard!