Repair Defect in p21 WAF1/CIP1 -/- human cancer cells. 1996

E R McDonald, and G S Wu, and T Waldman, and W S El-Deiry
Howard Hughes Medical Institute, Laboratory of Molecular Oncology and Cell Cycle Regulation, University of Pennsylvania Comprehensive Cancer Center, Philadelphia, 19104, USA.

p53 induction and cell cycle arrest occur following DNA damage, possibly to allow repair prior to replication. p21WAF1/CIP1, a cyclin-cyclin-dependent kinase inhibitor and proliferating cell nuclear antigen-interacting protein, is induced by p53 and mediates the cell cycle arrest. To investigate a role for p21 in DNA repair in vivo, we studied the expression of in vitro damaged reporter DNA transfected into p21 +/+ or -/- HCT116 human colon cancer cells. Introduction of UV-damaged or cisplatinum-damaged cytomegalovirus-driven beta-galactosidase reporter DNA into tumor cells revealed a significant decrease (2-5-fold) in reporter expression in p21 -/- versus +/+ cells. In the absence of DNA damage, there was a significant increase (2-3-fold) in the number of 6-TG-resistant colonies derived from p21 -/- versus +/+ cells. Reintroduction of wild-type p21, but not a p21 C-terminal truncation mutant which lacks the proliferating cell nuclear antigen interaction domain, stimulated (2-3-fold) the repair capacity of the p21-deficient cells. We conclude that p21 deficiency is associated with a defect in DNA repair, which could lead to an increased sensitivity of tumor cells to DNA damage.

UI MeSH Term Description Entries
D009363 Neoplasm Proteins Proteins whose abnormal expression (gain or loss) are associated with the development, growth, or progression of NEOPLASMS. Some neoplasm proteins are tumor antigens (ANTIGENS, NEOPLASM), i.e. they induce an immune reaction to their tumor. Many neoplasm proteins have been characterized and are used as tumor markers (BIOMARKERS, TUMOR) when they are detectable in cells and body fluids as monitors for the presence or growth of tumors. Abnormal expression of ONCOGENE PROTEINS is involved in neoplastic transformation, whereas the loss of expression of TUMOR SUPPRESSOR PROTEINS is involved with the loss of growth control and progression of the neoplasm. Proteins, Neoplasm
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002945 Cisplatin An inorganic and water-soluble platinum complex. After undergoing hydrolysis, it reacts with DNA to produce both intra and interstrand crosslinks. These crosslinks appear to impair replication and transcription of DNA. The cytotoxicity of cisplatin correlates with cellular arrest in the G2 phase of the cell cycle. Platinum Diamminodichloride,cis-Diamminedichloroplatinum(II),cis-Dichlorodiammineplatinum(II),Biocisplatinum,Dichlorodiammineplatinum,NSC-119875,Platidiam,Platino,Platinol,cis-Diamminedichloroplatinum,cis-Platinum,Diamminodichloride, Platinum,cis Diamminedichloroplatinum,cis Platinum
D003110 Colonic Neoplasms Tumors or cancer of the COLON. Cancer of Colon,Colon Adenocarcinoma,Colon Cancer,Cancer of the Colon,Colon Neoplasms,Colonic Cancer,Neoplasms, Colonic,Adenocarcinoma, Colon,Adenocarcinomas, Colon,Cancer, Colon,Cancer, Colonic,Cancers, Colon,Cancers, Colonic,Colon Adenocarcinomas,Colon Cancers,Colon Neoplasm,Colonic Cancers,Colonic Neoplasm,Neoplasm, Colon,Neoplasm, Colonic,Neoplasms, Colon
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004273 DNA, Neoplasm DNA present in neoplastic tissue. Neoplasm DNA
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

E R McDonald, and G S Wu, and T Waldman, and W S El-Deiry
August 2003, Molecular cancer therapeutics,
E R McDonald, and G S Wu, and T Waldman, and W S El-Deiry
January 2009, BioFactors (Oxford, England),
E R McDonald, and G S Wu, and T Waldman, and W S El-Deiry
October 2006, Liver international : official journal of the International Association for the Study of the Liver,
E R McDonald, and G S Wu, and T Waldman, and W S El-Deiry
January 2014, Asian Pacific journal of cancer prevention : APJCP,
E R McDonald, and G S Wu, and T Waldman, and W S El-Deiry
January 2000, International journal of cancer,
E R McDonald, and G S Wu, and T Waldman, and W S El-Deiry
March 2008, Molecular cancer therapeutics,
E R McDonald, and G S Wu, and T Waldman, and W S El-Deiry
July 1999, Experimental cell research,
E R McDonald, and G S Wu, and T Waldman, and W S El-Deiry
February 1997, Oncogene,
Copied contents to your clipboard!