Transcriptional regulation of the insulin-like growth factor-I receptor gene: evidence for protein kinase C-dependent and -independent pathways. 1996

J Du, and X P Meng, and P Delafontaine
Department of Medicine, Emory University, Atlanta, Georgia 30322, USA.

An important mechanism whereby growth factors stimulate vascular smooth muscle cell proliferation is by increasing insulin-like growth factor (IGF)-I receptor binding. To characterize the mechanisms involved, we studied transcription of the IGF-I receptor gene in rat aortic smooth muscle cells. Angiotensin II (100 nM) and basic fibroblast growth factor (5 ng/ml) caused a marked increase in IGF-I receptor messenger RNA (mRNA) levels, peaking at 3 h (215 +/- 16.8% and 85 +/- 7.4% above control, respectively). Nuclear run-on assays indicated that angiotensin II and fibroblast growth factor stimulated IGF-I receptor gene transcription by 2.1- and 2.5-fold, respectively. Down-regulation of protein kinase C, a serine/threonine kinase that is important in growth factor-activated signal transduction, completely inhibited fibroblast growth factor- but not angiotensin II-mediated up-regulation of IGF-I receptor mRNA. The protein kinase C inhibitors chelerythrine (3 microns), calphostin C (100 nM), and staurosporine (10 nM) also blocked fibroblast growth factor but not angiotensin II induction of IGF-I receptor mRNA. Thus, angiotensin II and fibroblast growth factor transcriptionally regulate the IGF-I receptor gene by protein kinase C-independent and -dependent pathways, respectively. In view of our prior data indicating that IGF-I receptor density is a critical determinant of vascular smooth muscle cell growth, our findings have particular relevance to understanding mechanisms whereby growth factors regulate vascular proliferation in vivo.

UI MeSH Term Description Entries
D007334 Insulin-Like Growth Factor I A well-characterized basic peptide believed to be secreted by the liver and to circulate in the blood. It has growth-regulating, insulin-like, and mitogenic activities. This growth factor has a major, but not absolute, dependence on GROWTH HORMONE. It is believed to be mainly active in adults in contrast to INSULIN-LIKE GROWTH FACTOR II, which is a major fetal growth factor. IGF-I,Somatomedin C,IGF-1,IGF-I-SmC,Insulin Like Growth Factor I,Insulin-Like Somatomedin Peptide I,Insulin Like Somatomedin Peptide I
D009124 Muscle Proteins The protein constituents of muscle, the major ones being ACTINS and MYOSINS. More than a dozen accessory proteins exist including TROPONIN; TROPOMYOSIN; and DYSTROPHIN. Muscle Protein,Protein, Muscle,Proteins, Muscle
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D000804 Angiotensin II An octapeptide that is a potent but labile vasoconstrictor. It is produced from angiotensin I after the removal of two amino acids at the C-terminal by ANGIOTENSIN CONVERTING ENZYME. The amino acid in position 5 varies in different species. To block VASOCONSTRICTION and HYPERTENSION effect of angiotensin II, patients are often treated with ACE INHIBITORS or with ANGIOTENSIN II TYPE 1 RECEPTOR BLOCKERS. Angiotensin II, Ile(5)-,Angiotensin II, Val(5)-,5-L-Isoleucine Angiotensin II,ANG-(1-8)Octapeptide,Angiotensin II, Isoleucine(5)-,Angiotensin II, Valine(5)-,Angiotensin-(1-8) Octapeptide,Isoleucine(5)-Angiotensin,Isoleucyl(5)-Angiotensin II,Valyl(5)-Angiotensin II,5 L Isoleucine Angiotensin II,Angiotensin II, 5-L-Isoleucine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

J Du, and X P Meng, and P Delafontaine
June 2006, Molecular and cellular endocrinology,
J Du, and X P Meng, and P Delafontaine
May 2002, The Journal of biological chemistry,
J Du, and X P Meng, and P Delafontaine
October 1985, The Journal of biological chemistry,
J Du, and X P Meng, and P Delafontaine
November 1998, Molecular and cellular biology,
J Du, and X P Meng, and P Delafontaine
September 1989, The Journal of biological chemistry,
J Du, and X P Meng, and P Delafontaine
October 1989, Proceedings of the National Academy of Sciences of the United States of America,
J Du, and X P Meng, and P Delafontaine
June 1998, The Journal of biological chemistry,
J Du, and X P Meng, and P Delafontaine
January 1999, Acta biochimica Polonica,
Copied contents to your clipboard!