Efficient expression of the gene for spinach phosphoribulokinase in Pichia pastoris and utilization of the recombinant enzyme to explore the role of regulatory cysteinyl residues by site-directed mutagenesis. 1996

H K Brandes, and F C Hartman, and T Y Lu, and F W Larimer
Protein Engineering Program, Biology Division, Oak Ridge National Laboratory, Tennessee 37831, USA.

Phosphoribulokinase (PRK), unique to photosynthetic organisms, is regulated in higher plants by thioredoxin-mediated thiol-disulfide exchange in a light-dependent manner. Prior attempts to overexpress the higher plant PRK gene in Escherichia coli for structure-function studies have been hampered by sensitivity of the recombinant protein to proteolysis as well as toxic effects of the protein on the host. To overcome these impediments, we have spliced the spinach PRK coding sequence immediately downstream from the AOX1 (alcohol oxidase) promoter of Pichia pastoris, displacing the chromosomal AOX1 gene. The PRK gene is now expressed, in response to methanol, at 4-6% of total soluble protein, without significant in vivo degradation of the recombinant enzyme. This recombinant spinach PRK is purified to homogeneity by successive anion-exchange and dye-affinity chromatography and is shown to be electrophoretically and kinetically indistinguishable from the authentic spinach counterpart. Site-specific replacement of all of PRK's cysteinyl residues (both individually and in combination) demonstrates a modest catalytically facilitative role for Cys-55 (one of the regulatory residues) and the lack of any catalytic role for Cys-16 (the other regulatory residue), Cys-244, or Cys-250. Mutants with seryl substitutions at position 55 display non-hyperbolic kinetics relative to the concentration of ribulose 5-phosphate. Sulfate restores hyperbolic kinetics and enhances kinase activity, presumably reflecting conformational differences between the position 55 mutants and wild-type enzyme. Catalytic competence of the C16S-C55S double mutant proves that mere loss of free sulfhydryl groups by oxidative regulation cannot account entirely for the accompanying total inactivation.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010843 Pichia Yeast-like ascomycetous fungi of the family Saccharomycetaceae, order SACCHAROMYCETALES isolated from exuded tree sap. Hansenula,Hansenulas,Pichias
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D003545 Cysteine A thiol-containing non-essential amino acid that is oxidized to form CYSTINE. Cysteine Hydrochloride,Half-Cystine,L-Cysteine,Zinc Cysteinate,Half Cystine,L Cysteine
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D015870 Gene Expression The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION. Expression, Gene,Expressions, Gene,Gene Expressions
D016297 Mutagenesis, Site-Directed Genetically engineered MUTAGENESIS at a specific site in the DNA molecule that introduces a base substitution, or an insertion or deletion. Mutagenesis, Oligonucleotide-Directed,Mutagenesis, Site-Specific,Oligonucleotide-Directed Mutagenesis,Site-Directed Mutagenesis,Site-Specific Mutagenesis,Mutageneses, Oligonucleotide-Directed,Mutageneses, Site-Directed,Mutageneses, Site-Specific,Mutagenesis, Oligonucleotide Directed,Mutagenesis, Site Directed,Mutagenesis, Site Specific,Oligonucleotide Directed Mutagenesis,Oligonucleotide-Directed Mutageneses,Site Directed Mutagenesis,Site Specific Mutagenesis,Site-Directed Mutageneses,Site-Specific Mutageneses
D017343 Genes, Plant The functional hereditary units of PLANTS. Plant Genes,Gene, Plant,Plant Gene

Related Publications

H K Brandes, and F C Hartman, and T Y Lu, and F W Larimer
June 1991, The Journal of biological chemistry,
H K Brandes, and F C Hartman, and T Y Lu, and F W Larimer
April 1993, Journal of protein chemistry,
H K Brandes, and F C Hartman, and T Y Lu, and F W Larimer
October 2017, Biochimica et biophysica acta. Molecular and cell biology of lipids,
H K Brandes, and F C Hartman, and T Y Lu, and F W Larimer
March 2005, Yi chuan = Hereditas,
H K Brandes, and F C Hartman, and T Y Lu, and F W Larimer
August 2002, Wei sheng wu xue bao = Acta microbiologica Sinica,
H K Brandes, and F C Hartman, and T Y Lu, and F W Larimer
February 2005, Archives of biochemistry and biophysics,
H K Brandes, and F C Hartman, and T Y Lu, and F W Larimer
October 1996, Annals of the New York Academy of Sciences,
H K Brandes, and F C Hartman, and T Y Lu, and F W Larimer
June 1993, Biochemistry,
H K Brandes, and F C Hartman, and T Y Lu, and F W Larimer
July 2019, Analytical biochemistry,
H K Brandes, and F C Hartman, and T Y Lu, and F W Larimer
August 2001, Trends in biochemical sciences,
Copied contents to your clipboard!