Neutralizing antibodies to human immunodeficiency virus type-1 gp120 induce envelope glycoprotein subunit dissociation. 1996

P Poignard, and T Fouts, and D Naniche, and J P Moore, and Q J Sattentau
Centre d'Immunologie de Marseille-Luminy, France.

The spectrum of the anti-human immunodeficiency virus (HIV) neutralizing immune response has been analyzed by the production and characterization of monoclonal antibodies (mAbs) to the viral envelope glycoproteins, gp41 and gp120. Little is known, however, about the neutralization mechanism of these antibodies. Here we show that the binding of a group of neutralizing mAbs that react with regions of the gp120 molecule associated with and including the V2 and V3 loops, the C4 domain and supporting structures, induce the dissociation of gp120 from gp41 on cells infected with the T cell line-adapted HIV-1 molecular clone Hx10. Similar to soluble receptor-induced dissociation of gp120 from gp41, the antibody-induced dissociation is dose- and time-dependent. By contrast, mAbs binding to discontinuous epitopes overlapping the CD4 binding site do not induce gp120 dissociation, implying that mAb induced conformational changes in gp120 are epitope specific, and that HIV neutralization probably involves several mechanisms.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009500 Neutralization Tests The measurement of infection-blocking titer of ANTISERA by testing a series of dilutions for a given virus-antiserum interaction end-point, which is generally the dilution at which tissue cultures inoculated with the serum-virus mixtures demonstrate cytopathology (CPE) or the dilution at which 50% of test animals injected with serum-virus mixtures show infectivity (ID50) or die (LD50). Neutralization Test,Test, Neutralization,Tests, Neutralization
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004797 Enzyme-Linked Immunosorbent Assay An immunoassay utilizing an antibody labeled with an enzyme marker such as horseradish peroxidase. While either the enzyme or the antibody is bound to an immunosorbent substrate, they both retain their biologic activity; the change in enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional to the concentration of the antigen and can be measured spectrophotometrically or with the naked eye. Many variations of the method have been developed. ELISA,Assay, Enzyme-Linked Immunosorbent,Assays, Enzyme-Linked Immunosorbent,Enzyme Linked Immunosorbent Assay,Enzyme-Linked Immunosorbent Assays,Immunosorbent Assay, Enzyme-Linked,Immunosorbent Assays, Enzyme-Linked
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D006023 Glycoproteins Conjugated protein-carbohydrate compounds including MUCINS; mucoid, and AMYLOID glycoproteins. C-Glycosylated Proteins,Glycosylated Protein,Glycosylated Proteins,N-Glycosylated Proteins,O-Glycosylated Proteins,Glycoprotein,Neoglycoproteins,Protein, Glycosylated,Proteins, C-Glycosylated,Proteins, Glycosylated,Proteins, N-Glycosylated,Proteins, O-Glycosylated
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal

Related Publications

P Poignard, and T Fouts, and D Naniche, and J P Moore, and Q J Sattentau
August 1988, Journal of virology,
P Poignard, and T Fouts, and D Naniche, and J P Moore, and Q J Sattentau
June 1995, Journal of virology,
P Poignard, and T Fouts, and D Naniche, and J P Moore, and Q J Sattentau
November 2002, The Journal of general virology,
P Poignard, and T Fouts, and D Naniche, and J P Moore, and Q J Sattentau
January 2016, Expert review of vaccines,
P Poignard, and T Fouts, and D Naniche, and J P Moore, and Q J Sattentau
September 2018, Retrovirology,
P Poignard, and T Fouts, and D Naniche, and J P Moore, and Q J Sattentau
July 1988, Proceedings of the National Academy of Sciences of the United States of America,
P Poignard, and T Fouts, and D Naniche, and J P Moore, and Q J Sattentau
April 1991, Journal of virology,
P Poignard, and T Fouts, and D Naniche, and J P Moore, and Q J Sattentau
November 1991, Journal of virology,
P Poignard, and T Fouts, and D Naniche, and J P Moore, and Q J Sattentau
February 1992, The Journal of general virology,
P Poignard, and T Fouts, and D Naniche, and J P Moore, and Q J Sattentau
March 1996, Journal of virology,
Copied contents to your clipboard!