Nucleotide sequence of the capsid protein gene of papaya leaf-distortion mosaic potyvirus. 1996

T Maoka, and S Kashiwazaki, and S Tsuda, and T Usugi, and H Hibino
Okinawa Subtropical Station of the Japan International Research Center for Agricultural Sciences, Okinawa, Japan.

The DNA complementary to the 3'-terminal 1 404 nucleotides [excluding the poly(A) tail] of papaya leaf-distortion mosaic potyvirus (PLDMV) RNA was cloned and sequenced. The sequence starts within a long open reading frame (ORF) of 1 195 nucleotides and is followed by a 3' non-coding region of 209 nucleotides. Capsid protein (CP) is encoded at the 3' terminus of the ORF. The CP contains 293 residues and has a Mr of 33 277. The CP of PLDMV exhibits 49 to 59% sequence similarity at the amino acid level to the CPs of papaya ringspot potyvirus (PRSV) and other potyviruses. This result is consistent with the absence of a serological relationship between PLDMV and PRSV or other potyviruses. The results support the assignment of PLDMV as a distinct member of the genus Potyvirus.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D002213 Capsid The outer protein protective shell of a virus, which protects the viral nucleic acid. Capsids are composed of repeating units (capsomers or capsomeres) of CAPSID PROTEINS which when assembled together form either an icosahedral or helical shape. Procapsid,Prohead,Capsids,Procapsids,Proheads
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D005638 Fruit The fleshy or dry ripened ovary of a plant, enclosing the seed or seeds. Berries,Legume Pod,Plant Aril,Plant Capsule,Aril, Plant,Arils, Plant,Berry,Capsule, Plant,Capsules, Plant,Fruits,Legume Pods,Plant Arils,Plant Capsules,Pod, Legume,Pods, Legume
D005814 Genes, Viral The functional hereditary units of VIRUSES. Viral Genes,Gene, Viral,Viral Gene
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D016366 Open Reading Frames A sequence of successive nucleotide triplets that are read as CODONS specifying AMINO ACIDS and begin with an INITIATOR CODON and end with a stop codon (CODON, TERMINATOR). ORFs,Protein Coding Region,Small Open Reading Frame,Small Open Reading Frames,sORF,Unassigned Reading Frame,Unassigned Reading Frames,Unidentified Reading Frame,Coding Region, Protein,Frame, Unidentified Reading,ORF,Open Reading Frame,Protein Coding Regions,Reading Frame, Open,Reading Frame, Unassigned,Reading Frame, Unidentified,Region, Protein Coding,Unidentified Reading Frames
D017386 Sequence Homology, Amino Acid The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species. Homologous Sequences, Amino Acid,Amino Acid Sequence Homology,Homologs, Amino Acid Sequence,Homologs, Protein Sequence,Homology, Protein Sequence,Protein Sequence Homologs,Protein Sequence Homology,Sequence Homology, Protein,Homolog, Protein Sequence,Homologies, Protein Sequence,Protein Sequence Homolog,Protein Sequence Homologies,Sequence Homolog, Protein,Sequence Homologies, Protein,Sequence Homologs, Protein
D017800 Potyvirus A large genus of plant viruses of the family POTYVIRIDAE which infect mainly plants of the Solanaceae. Transmission is primarily by aphids in a non-persistent manner. The type species is potato virus Y. Potato Virus Y,Potato Virus Ys,Potyviruses,Virus Ys, Potato,Ys, Potato Virus

Related Publications

T Maoka, and S Kashiwazaki, and S Tsuda, and T Usugi, and H Hibino
July 2021, Horticulture research,
T Maoka, and S Kashiwazaki, and S Tsuda, and T Usugi, and H Hibino
February 2005, Phytopathology,
T Maoka, and S Kashiwazaki, and S Tsuda, and T Usugi, and H Hibino
July 2006, Archives of virology,
T Maoka, and S Kashiwazaki, and S Tsuda, and T Usugi, and H Hibino
January 1988, The Journal of general virology,
T Maoka, and S Kashiwazaki, and S Tsuda, and T Usugi, and H Hibino
October 1991, Virus genes,
T Maoka, and S Kashiwazaki, and S Tsuda, and T Usugi, and H Hibino
August 1990, The Journal of general virology,
T Maoka, and S Kashiwazaki, and S Tsuda, and T Usugi, and H Hibino
November 1989, The Journal of general virology,
T Maoka, and S Kashiwazaki, and S Tsuda, and T Usugi, and H Hibino
January 1994, The Journal of general virology,
T Maoka, and S Kashiwazaki, and S Tsuda, and T Usugi, and H Hibino
September 1989, The Journal of general virology,
T Maoka, and S Kashiwazaki, and S Tsuda, and T Usugi, and H Hibino
January 1993, Intervirology,
Copied contents to your clipboard!