Lung hyaluronan decreases during group B streptococcal pneumonia in neonatal piglets. 1996

S E Juul, and M G Kinsella, and W E Truog, and R L Gibson, and G J Redding
Department of Pediatrics, University of Washington, Seattle, USA.

Neonatal Group B streptococcus (GBS) sepsis and pneumonia result in lung injury and remain a major cause of morbidity and mortality in the newborn. Increased lung hyaluronan (HA) content is an important component of the lung's early response to damage in diseases such as adult respiratory distress syndrome (ARDS), infant respiratory distress syndrome (IRDS), and bleomycin-induced fibrosis. It is known, however, that GBS virulence factors include specific secretory enzymes such as hyaluronidase, an enzyme which breaks down HA. We therefore hypothesized that in lobar GBS pneumonia, lung HA would be decreased compared with normal values, and that in lobar pneumonia with atelectasis, lung HA would be further decreased because of increased substrate availability. The right lower lobes (RLL) and left lower lobes (LLL) of anesthetized piglets 16 +/- 2 d old were each selectively inoculated with 1 x 10(9) colony-forming units (CFU) GBS via an endobronchial catheter (n = 7). The LLL was subsequently collapsed by endobronchial occlusion following 10 min of 100% O2. Control animals (n = 6) was anesthetized, instrumented, and ventilated without exposure to GBS. At 4 h, lungs were removed and HA extracted and assayed using a competitive inhibition assay. HA extracted from areas of lobar pneumonia was significantly decreased (27 +/- 6.6 micrograms/g wet lung, p < 0.005) when compared with control values of control piglets (51 +/- 19.6 micrograms/g wet lung). Atelectasis plus lobar pneumonia further decreased lung HA to 10 +/- 13.3 micrograms/g wet lung, p < 0.0001. We conclude that lobar GBS decreases lung HA and that this process is augmented by collapsed lung regions, and speculate that this departure from the usual early lung response to injury contributes to GBS invasion of lung parenchyma.

UI MeSH Term Description Entries
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D011018 Pneumonia, Pneumococcal A febrile disease caused by STREPTOCOCCUS PNEUMONIAE. Pneumococcal Pneumonia,Pneumococcal Pneumonias,Pneumonias, Pneumococcal
D012121 Respiration, Artificial Any method of artificial breathing that employs mechanical or non-mechanical means to force the air into and out of the lungs. Artificial respiration or ventilation is used in individuals who have stopped breathing or have RESPIRATORY INSUFFICIENCY to increase their intake of oxygen (O2) and excretion of carbon dioxide (CO2). Ventilation, Mechanical,Mechanical Ventilation,Artificial Respiration,Artificial Respirations,Mechanical Ventilations,Respirations, Artificial,Ventilations, Mechanical
D001992 Bronchoalveolar Lavage Fluid Washing liquid obtained from irrigation of the lung, including the BRONCHI and the PULMONARY ALVEOLI. It is generally used to assess biochemical, inflammatory, or infection status of the lung. Alveolar Lavage Fluid,Bronchial Lavage Fluid,Lung Lavage Fluid,Bronchial Alveolar Lavage Fluid,Lavage Fluid, Bronchial,Lavage Fluid, Lung,Pulmonary Lavage Fluid,Alveolar Lavage Fluids,Bronchial Lavage Fluids,Bronchoalveolar Lavage Fluids,Lavage Fluid, Alveolar,Lavage Fluid, Bronchoalveolar,Lavage Fluid, Pulmonary,Lavage Fluids, Alveolar,Lavage Fluids, Bronchial,Lavage Fluids, Bronchoalveolar,Lavage Fluids, Lung,Lavage Fluids, Pulmonary,Lung Lavage Fluids,Pulmonary Lavage Fluids
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D006820 Hyaluronic Acid A natural high-viscosity mucopolysaccharide with alternating beta (1-3) glucuronide and beta (1-4) glucosaminidic bonds. It is found in the UMBILICAL CORD, in VITREOUS BODY and in SYNOVIAL FLUID. A high urinary level is found in PROGERIA. Amo Vitrax,Amvisc,Biolon,Etamucine,Healon,Hyaluronan,Hyaluronate Sodium,Hyvisc,Luronit,Sodium Hyaluronate,Acid, Hyaluronic,Hyaluronate, Sodium,Vitrax, Amo
D006821 Hyaluronoglucosaminidase An enzyme that catalyzes the random hydrolysis of 1,4-linkages between N-acetyl-beta-D-glucosamine and D-glucuronate residues in hyaluronate. (From Enzyme Nomenclature, 1992) There has been use as ANTINEOPLASTIC AGENTS to limit NEOPLASM METASTASIS. Hyaluronidase,Duran-Reynals Permeability Factor,GL Enzyme,Hyaglosidase,Hyaluronate Hydrolase,Wydase,Duran Reynals Permeability Factor,Factor, Duran-Reynals Permeability,Hydrolase, Hyaluronate,Permeability Factor, Duran-Reynals
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals
D001261 Pulmonary Atelectasis Absence of air in the entire or part of a lung, such as an incompletely inflated neonate lung or a collapsed adult lung. Pulmonary atelectasis can be caused by airway obstruction, lung compression, fibrotic contraction, or other factors. Atelectasis, Congestive,Lung Collapse,Atelectasis,Compression Atelectasis,Compression Pulmonary Atelectasis,Congestive Atelectasis,Congestive Pulmonary Atelectasis,Contraction Pulmonary Atelectasis,Postoperative Pulmonary Atelectasis,Resorption Atelectasis,Resorption Pulmonary Atelectasis,Atelectases,Atelectases, Compression,Atelectases, Compression Pulmonary,Atelectases, Congestive,Atelectases, Congestive Pulmonary,Atelectases, Contraction Pulmonary,Atelectases, Postoperative Pulmonary,Atelectases, Pulmonary,Atelectases, Resorption,Atelectases, Resorption Pulmonary,Atelectasis, Compression,Atelectasis, Compression Pulmonary,Atelectasis, Congestive Pulmonary,Atelectasis, Contraction Pulmonary,Atelectasis, Postoperative Pulmonary,Atelectasis, Pulmonary,Atelectasis, Resorption,Atelectasis, Resorption Pulmonary,Collapse, Lung,Compression Atelectases,Compression Pulmonary Atelectases,Congestive Atelectases,Congestive Pulmonary Atelectases,Contraction Pulmonary Atelectases,Postoperative Pulmonary Atelectases,Pulmonary Atelectases,Pulmonary Atelectases, Compression,Pulmonary Atelectases, Congestive,Pulmonary Atelectases, Contraction,Pulmonary Atelectases, Postoperative,Pulmonary Atelectases, Resorption,Pulmonary Atelectasis, Compression,Pulmonary Atelectasis, Congestive,Pulmonary Atelectasis, Contraction,Pulmonary Atelectasis, Postoperative,Pulmonary Atelectasis, Resorption,Resorption Atelectases,Resorption Pulmonary Atelectases

Related Publications

S E Juul, and M G Kinsella, and W E Truog, and R L Gibson, and G J Redding
January 2004, Lung,
S E Juul, and M G Kinsella, and W E Truog, and R L Gibson, and G J Redding
December 1994, Pediatric research,
S E Juul, and M G Kinsella, and W E Truog, and R L Gibson, and G J Redding
March 1982, Pediatric research,
S E Juul, and M G Kinsella, and W E Truog, and R L Gibson, and G J Redding
January 1995, Journal of perinatology : official journal of the California Perinatal Association,
S E Juul, and M G Kinsella, and W E Truog, and R L Gibson, and G J Redding
May 1990, The American review of respiratory disease,
S E Juul, and M G Kinsella, and W E Truog, and R L Gibson, and G J Redding
June 2015, BMJ case reports,
S E Juul, and M G Kinsella, and W E Truog, and R L Gibson, and G J Redding
January 2007, Perspective infirmiere : revue officielle de l'Ordre des infirmieres et infirmiers du Quebec,
S E Juul, and M G Kinsella, and W E Truog, and R L Gibson, and G J Redding
January 1997, MCN. The American journal of maternal child nursing,
S E Juul, and M G Kinsella, and W E Truog, and R L Gibson, and G J Redding
April 2022, Clinical microbiology reviews,
S E Juul, and M G Kinsella, and W E Truog, and R L Gibson, and G J Redding
March 2001, Lancet (London, England),
Copied contents to your clipboard!