Characterization of a Rana catesbeiana hsp30 gene and its expression in the liver of this amphibian during both spontaneous and thyroid hormone-induced metamorphosis. 1996

C Helbing, and C Gallimore, and B G Atkinson
Department of Zoology, Molecular Genetics Unit, Western Science Centre, University of Western Ontario, London, Canada.

During metamorphosis, the Rana catesbeiana tadpole undergoes developmental changes in almost every tissue/organ. These changes prepare the ammonotelic, swimming larva for its transition to a ureotelic, terrestrial adult, and involve dramatic remodeling. The postembryonic changes in this tadpole are initiated by the thyroid hormones (TH) and result in the extensive degradation of proteins and degeneration of tissues characteristic of the larval phenotype and in the de novo synthesis of proteins characteristic of the adult phenotype. We questioned whether the drastic nature and abruptness of the TH-dependent, postembryonic changes occurring in the tissues of this tadpole might be perceived by the cells in some tissues as stressful and, therefore, cause them to express heat shock and/or stress-like proteins. To address this question, we isolated and characterized a Rana catesbeiana hsp30 gene and used sequences from it to determine if mRNAs encoded from it, or other members of this gene family, are expressed in tissues of tadpoles undergoing metamorphosis. Our results demonstrate that the liver of metamorphosing Rana catesbeiana tadpoles accumulate hsp30 mRNAs and express the heat shock proteins they encode. The fact that the expression of these hsp30s in the liver of these tadpoles is coincidental with the TH-induced expression of genes encoding the liver-specific urea cycle enzymes suggests that TH may influence, directly or indirectly, the expression of these hsp30 genes and, moreover, implies that the presence of one or more of these heat shock proteins may be necessary for the developmental transitions occurring in this organ.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008675 Metamorphosis, Biological Profound physical changes during maturation of living organisms from the immature forms to the adult forms, such as from TADPOLES to frogs; caterpillars to BUTTERFLIES. Biological Metamorphosis,Biological Metamorphoses,Metamorphoses, Biological
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011892 Rana catesbeiana A species of the family Ranidae (true frogs). The only anuran properly referred to by the common name "bullfrog", it is the largest native anuran in North America. Bullfrog,Bullfrogs,Rana catesbeianas,catesbeiana, Rana
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D006360 Heat-Shock Proteins Proteins which are synthesized in eukaryotic organisms and bacteria in response to hyperthermia and other environmental stresses. They increase thermal tolerance and perform functions essential to cell survival under these conditions. Stress Protein,Stress Proteins,Heat-Shock Protein,Heat Shock Protein,Heat Shock Proteins,Protein, Stress
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

C Helbing, and C Gallimore, and B G Atkinson
April 1987, The Journal of biological chemistry,
C Helbing, and C Gallimore, and B G Atkinson
October 1972, Developmental biology,
C Helbing, and C Gallimore, and B G Atkinson
November 1972, The Journal of experimental zoology,
C Helbing, and C Gallimore, and B G Atkinson
January 1973, Developmental biology,
C Helbing, and C Gallimore, and B G Atkinson
February 1964, Archives of biochemistry and biophysics,
C Helbing, and C Gallimore, and B G Atkinson
February 1977, General and comparative endocrinology,
C Helbing, and C Gallimore, and B G Atkinson
February 1984, The Journal of experimental zoology,
Copied contents to your clipboard!