hyp gene products in Alcaligenes eutrophus are part of a hydrogenase-maturation system. 1996

J Dernedde, and T Eitinger, and N Patenge, and B Friedrich
Institut für Pflanzenphysiologie und Mikrobiologie, Freie Universitat Berlin, Germany.

In Alcaligenes eutrophus H16 the hyp gene complex consists of six open reading frames hypA1, B1, F1, C, D and E whose products are involved in maturation of the two NiFe hydrogenases: an NAD-reducing cytoplasmic enzyme (SH) and a membrane-bound electron-transport-coupled protein (MBH). hypB1 and hypF1 were originally considered to form a single open reading frame designated hypB [Dernedde, J., Eitinger, M. & Friedrich, B. (1993) Arch. Microbiol. 159, 545-553]. Re-examination of the relevant sequence identified hypB1 and hypF1 as two distinct genes. Non-polar in-frame deletions in the individual hyp genes were constructed in vitro and transferred via gene replacement to the wild-type strain. The resulting mutants fall into two classes. Deletions in hypC, D and E (class I) gave a clear negative phenotype, while hypA1, B1 and F1 deletion mutants (class II) were not impaired in hydrogen metabolism. Class I mutants were unable to grow on hydrogen under autotrophic conditions. The enzymatic activities of SH and MBH were disrupted in all three class I mutants. Immunoblot analysis showed the presence of the H2-activating SH subunit (HoxH) at levels comparable to those observed in the wild-type strain whereas the other three subunits (HoxF, U and Y) were only detectable in trace amounts, probably due to proteolytic degradation. Likewise, MBH was less stable in hypC, D and E deletion mutants and was not attached to the cytoplasmic membrane. In the wild-type strain, HoxH and the MBH large subunit (HoxG) undergo C-terminal proteolytic processing before attaining enzymatic activity. In class I mutants this maturation was blocked. 63Ni-incorporation experiments identified both hydrogenases as nickel-free apoproteins in these mutants. Although class II mutants bearing deletions in hypA1, B1 and F1 showed no alteration of the wild-type phenotype, a role for these genes in the incorporation of nickel and hence hydrogenase maturation cannot be excluded, since there is experimental evidence that this set of genes is duplicated in A. eutrophus.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009243 NAD A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed) Coenzyme I,DPN,Diphosphopyridine Nucleotide,Nadide,Nicotinamide-Adenine Dinucleotide,Dihydronicotinamide Adenine Dinucleotide,NADH,Adenine Dinucleotide, Dihydronicotinamide,Dinucleotide, Dihydronicotinamide Adenine,Dinucleotide, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide,Nucleotide, Diphosphopyridine
D009532 Nickel A trace element with the atomic symbol Ni, atomic number 28, and atomic weight 58.69. It is a cofactor of the enzyme UREASE.
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D004579 Electron Transport The process by which ELECTRONS are transported from a reduced substrate to molecular OXYGEN. (From Bennington, Saunders Dictionary and Encyclopedia of Laboratory Medicine and Technology, 1984, p270) Respiratory Chain,Chain, Respiratory,Chains, Respiratory,Respiratory Chains,Transport, Electron
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial

Related Publications

J Dernedde, and T Eitinger, and N Patenge, and B Friedrich
October 1992, Journal of bacteriology,
J Dernedde, and T Eitinger, and N Patenge, and B Friedrich
March 1989, Journal of bacteriology,
J Dernedde, and T Eitinger, and N Patenge, and B Friedrich
April 1984, Journal of bacteriology,
J Dernedde, and T Eitinger, and N Patenge, and B Friedrich
November 1998, Archives of microbiology,
J Dernedde, and T Eitinger, and N Patenge, and B Friedrich
November 1998, Archives of microbiology,
J Dernedde, and T Eitinger, and N Patenge, and B Friedrich
June 1998, Journal of bacteriology,
J Dernedde, and T Eitinger, and N Patenge, and B Friedrich
August 1996, Journal of bacteriology,
J Dernedde, and T Eitinger, and N Patenge, and B Friedrich
January 1992, Archives of microbiology,
J Dernedde, and T Eitinger, and N Patenge, and B Friedrich
April 1981, Archives of microbiology,
J Dernedde, and T Eitinger, and N Patenge, and B Friedrich
October 1992, Journal of bacteriology,
Copied contents to your clipboard!