Functional analysis of human/chicken transferrin receptor chimeras indicates that the carboxy-terminal region is important for ligand binding. 1996

F Buchegger, and I S Trowbridge, and L F Liu, and S White, and J F Collawn
Department of Cancer Biology, The Salk Institute, San Diego, CA, USA.

Chimeric human/chicken transferrin receptors have been constructed using the polymerase chain reaction. Different regions of the 671-residue external domain of the human transferrin receptor were replaced by the corresponding sequences from the chicken transferrin receptor. As chicken transferrin receptors do not bind human transferrin, functional analysis of such chimeric receptors provides an approach to define the ligand-binding site of the human transferrin receptor. Four of 16 chimeric human/chicken transferrin receptors expressed in chick embryo fibroblasts were efficiently transported to the plasma membrane and displayed on the cell surface. Studies of the four chimeric receptors indicated that binding of human transferrin was abolished if the carboxy terminal 192 amino acids of the human transferrin receptor (residues 569-760) were replaced with the corresponding region from the chicken transferrin receptor. Further, a chimeric receptor in which the carboxy-terminal 72 residues were derived from the chicken transferrin receptor exhibited a 16-fold decrease in binding affinity for human transferrin. In contrast, analysis of the other two chimeric receptors showed that 340 amino acids of the human transferrin receptor external domain more proximal to the transmembrane region (residues 151-490) could be replaced with the corresponding region from the chicken transferrin receptor without loss of high-affinity ligand binding. In contrast, two mAbs against the human transferrin receptor external domain, B3/25 and D65.3, that do not compete with transferrin binding, do not bind the chimeric transferrin receptors in which the membrane proximal part is replaced by chicken sequences, while they do bind the two other chimeric transferrin receptors with high affinity. These data indicate that sequence differences in the carboxy-terminal region of human and chicken transferrin receptor external domains are important for the species specificity of transferrin binding and imply that this portion of the human transferrin receptor is critical for ligand binding.

UI MeSH Term Description Entries
D007120 Immunochemistry Field of chemistry that pertains to immunological phenomena and the study of chemical reactions related to antigen stimulation of tissues. It includes physicochemical interactions between antigens and antibodies.
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D011990 Receptors, Transferrin Membrane glycoproteins found in high concentrations on iron-utilizing cells. They specifically bind iron-bearing transferrin, are endocytosed with its ligand and then returned to the cell surface where transferrin without its iron is released. Transferrin Receptors,Transferrin Receptor,Receptor, Transferrin
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal

Related Publications

F Buchegger, and I S Trowbridge, and L F Liu, and S White, and J F Collawn
January 1989, Science (New York, N.Y.),
F Buchegger, and I S Trowbridge, and L F Liu, and S White, and J F Collawn
February 1989, The EMBO journal,
F Buchegger, and I S Trowbridge, and L F Liu, and S White, and J F Collawn
January 1974, Physiological chemistry and physics,
F Buchegger, and I S Trowbridge, and L F Liu, and S White, and J F Collawn
November 1994, Endocrinology,
F Buchegger, and I S Trowbridge, and L F Liu, and S White, and J F Collawn
September 2000, Blood,
F Buchegger, and I S Trowbridge, and L F Liu, and S White, and J F Collawn
May 1994, Infection and immunity,
F Buchegger, and I S Trowbridge, and L F Liu, and S White, and J F Collawn
January 1992, Growth factors (Chur, Switzerland),
F Buchegger, and I S Trowbridge, and L F Liu, and S White, and J F Collawn
February 1987, Journal of virology,
F Buchegger, and I S Trowbridge, and L F Liu, and S White, and J F Collawn
May 2011, Journal of virology,
Copied contents to your clipboard!