Microtubule-associated protein-dependent binding of phagosomes to microtubules. 1996

A Blocker, and F F Severin, and A Habermann, and A A Hyman, and G Griffiths, and J K Burkhardt
Cell Biology Programme, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.

In macrophages, phagosome movement is microtubule-dependent. Microtubules are a prerequisite for phagosome maturation because they facilitate interactions between phagosomes and organelles of the endocytic pathway. We have established an in vitro assay that measures the binding of purified phagosomes to microtubules. This binding depends on the presence of membrane proteins, most likely integral to the surface of phagosomes, and on macrophage cytosol. The cytosolic binding factor can interact with microtubules prior to the addition of phagosomes to the assay, suggesting that it is a microtubule-associated protein (MAP). Consistent with this, depletion of MAPs from the cytosol by microtubule affinity removes all binding activity. Microtubule motor proteins show no binding activity, whereas a crude MAP preparation is sufficient to support binding and to restore full binding activity to MAP-depleted cytosol. We show that the activating MAP factor is a heat-sensitive protein(s) that migrates at around 150 kDa by gel filtration.

UI MeSH Term Description Entries
D007425 Intracellular Membranes Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Membranes, Intracellular,Intracellular Membrane,Membrane, Intracellular
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D008561 Membrane Fusion The adherence and merging of cell membranes, intracellular membranes, or artificial membranes to each other or to viruses, parasites, or interstitial particles through a variety of chemical and physical processes. Fusion, Membrane,Fusions, Membrane,Membrane Fusions
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008869 Microtubule-Associated Proteins High molecular weight proteins found in the MICROTUBULES of the cytoskeletal system. Under certain conditions they are required for TUBULIN assembly into the microtubules and stabilize the assembled microtubules. Ensconsin,Epithelial MAP, 115 kDa,Epithelial Microtubule-Associate Protein, 115 kDa,MAP4,Microtubule Associated Protein,Microtubule Associated Protein 4,Microtubule Associated Protein 7,Microtubule-Associated Protein,Microtubule-Associated Protein 7,E-MAP-115,MAP1 Microtubule-Associated Protein,MAP2 Microtubule-Associated Protein,MAP3 Microtubule-Associated Protein,Microtubule Associated Proteins,Microtubule-Associated Protein 1,Microtubule-Associated Protein 2,Microtubule-Associated Protein 3,7, Microtubule-Associated Protein,Associated Protein, Microtubule,E MAP 115,Epithelial Microtubule Associate Protein, 115 kDa,MAP1 Microtubule Associated Protein,MAP2 Microtubule Associated Protein,MAP3 Microtubule Associated Protein,Microtubule Associated Protein 1,Microtubule Associated Protein 2,Microtubule Associated Protein 3,Microtubule-Associated Protein, MAP1,Microtubule-Associated Protein, MAP2,Microtubule-Associated Protein, MAP3,Protein 7, Microtubule-Associated,Protein, Microtubule Associated,Protein, Microtubule-Associated
D008870 Microtubules Slender, cylindrical filaments found in the cytoskeleton of plant and animal cells. They are composed of the protein TUBULIN and are influenced by TUBULIN MODULATORS. Microtubule
D010588 Phagosomes Membrane-bound cytoplasmic vesicles formed by invagination of phagocytized material. They fuse with lysosomes to form phagolysosomes in which the hydrolytic enzymes of the lysosome digest the phagocytized material. Phagolysosomes,Phagolysosome,Phagosome
D002458 Cell Fractionation Techniques to partition various components of the cell into SUBCELLULAR FRACTIONS. Cell Fractionations,Fractionation, Cell,Fractionations, Cell
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell

Related Publications

A Blocker, and F F Severin, and A Habermann, and A A Hyman, and G Griffiths, and J K Burkhardt
March 2010, The Journal of biological chemistry,
A Blocker, and F F Severin, and A Habermann, and A A Hyman, and G Griffiths, and J K Burkhardt
January 1981, Cell motility,
A Blocker, and F F Severin, and A Habermann, and A A Hyman, and G Griffiths, and J K Burkhardt
March 1996, Biochemistry,
A Blocker, and F F Severin, and A Habermann, and A A Hyman, and G Griffiths, and J K Burkhardt
October 1986, The Journal of cell biology,
A Blocker, and F F Severin, and A Habermann, and A A Hyman, and G Griffiths, and J K Burkhardt
August 1991, The Journal of cell biology,
A Blocker, and F F Severin, and A Habermann, and A A Hyman, and G Griffiths, and J K Burkhardt
January 1998, Methods in enzymology,
A Blocker, and F F Severin, and A Habermann, and A A Hyman, and G Griffiths, and J K Burkhardt
January 1987, Cell motility and the cytoskeleton,
A Blocker, and F F Severin, and A Habermann, and A A Hyman, and G Griffiths, and J K Burkhardt
February 2007, Neuroscience,
A Blocker, and F F Severin, and A Habermann, and A A Hyman, and G Griffiths, and J K Burkhardt
August 1998, The Journal of biological chemistry,
A Blocker, and F F Severin, and A Habermann, and A A Hyman, and G Griffiths, and J K Burkhardt
November 2015, Biochemical and biophysical research communications,
Copied contents to your clipboard!