Pulmonary administration of vasoactive substances by perfluorochemical ventilation. 1996

M R Wolfson, and J S Greenspan, and T H Shaffer
Department of Physiology and Pediatrics, Temple University School of Medicine, Philadelphia, Pennsylvania 19149, USA.

OBJECTIVE Therapeutic management of respiratory distress syndrome, pneumonia, and pulmonary hypertension includes delivery of biologically active agents to the neonatal lung. However, mechanical abnormalities of the lung, intrapulmonary shunting, ventilation-perfusion mismatching, and elevated surface tension impede effective systemic or intratracheal delivery of agents to the lung during conventional gas ventilation. The objective of this study was to test the hypothesis that perfluorochemical (PFC) liquid ventilation can be used for pulmonary administration of vasoactive drugs (PAD) and to compare these responses to those elicited with intravascular (IV) administration during tidal liquid ventilation. METHODS Cardiovascular responses of 16 preterm and neonatal lambs to randomized doses of acetylcholine, epinephrine, and priscoline were studied. Physiologic gas exchanged and acid-base balance were maintained using previously described tidal liquid ventilation techniques. In subgroups of animals, the distribution pattern of carbon 1- and choline 14-labeled dipalmitoylphosphatidylcholine (14C-DPPC) in saline and the responses to priscoline after hypoxia-induced pulmonary hypertension and hypoxemia administered during liquid ventilation were studied. RESULTS Dose-response curves for PAD and IV administration demonstrated progressive, dose-dependent, cholinergic responses to acetylcholine (decreased mean systemic arterial pressure [MAP] and heart rate), sympathomimetic responses to epinephrine (increased MAP and heart rate), and alpha-adrenergic blockade responses to priscoline (decreased MAP and mean pulmonary arterial pressure). Compared with IV administration, PAD of priscoline resulted in a significantly greater decrease in pulmonary relative to systemic arterial pressure; this response was potentiated by hypoxia, reduced pulmonary pressures to near normal values, and improved oxygenation. The 14C-DPPC in saline was distributed relatively homogeneously throughout the lung by PAD, with 80% of the lung pieces receiving amounts of 14C-DPPC with +/-20% of the mean value. CONCLUSIONS This study demonstrates that vasoactive agents can be delivered to the lung directly by PAD during PFC liquid ventilation. The inherent advantages of this method relate to the physical properties of PFC liquid ventilation as a vehicle (respiratory gas solubility, low surface tension-enhancing distribution, and inertness precluding interaction) and physiological properties of the lung as an exchanger.

UI MeSH Term Description Entries
D006976 Hypertension, Pulmonary Increased VASCULAR RESISTANCE in the PULMONARY CIRCULATION, usually secondary to HEART DISEASES or LUNG DISEASES. Pulmonary Hypertension
D007275 Injections, Intravenous Injections made into a vein for therapeutic or experimental purposes. Intravenous Injections,Injection, Intravenous,Intravenous Injection
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D011659 Pulmonary Gas Exchange The exchange of OXYGEN and CARBON DIOXIDE between alveolar air and pulmonary capillary blood that occurs across the BLOOD-AIR BARRIER. Exchange, Pulmonary Gas,Gas Exchange, Pulmonary
D012121 Respiration, Artificial Any method of artificial breathing that employs mechanical or non-mechanical means to force the air into and out of the lungs. Artificial respiration or ventilation is used in individuals who have stopped breathing or have RESPIRATORY INSUFFICIENCY to increase their intake of oxygen (O2) and excretion of carbon dioxide (CO2). Ventilation, Mechanical,Mechanical Ventilation,Artificial Respiration,Artificial Respirations,Mechanical Ventilations,Respirations, Artificial,Ventilations, Mechanical
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004837 Epinephrine The active sympathomimetic hormone from the ADRENAL MEDULLA. It stimulates both the alpha- and beta- adrenergic systems, causes systemic VASOCONSTRICTION and gastrointestinal relaxation, stimulates the HEART, and dilates BRONCHI and cerebral vessels. It is used in ASTHMA and CARDIAC FAILURE and to delay absorption of local ANESTHETICS. Adrenaline,4-(1-Hydroxy-2-(methylamino)ethyl)-1,2-benzenediol,Adrenaline Acid Tartrate,Adrenaline Bitartrate,Adrenaline Hydrochloride,Epifrin,Epinephrine Acetate,Epinephrine Bitartrate,Epinephrine Hydrochloride,Epinephrine Hydrogen Tartrate,Epitrate,Lyophrin,Medihaler-Epi,Acetate, Epinephrine
D005466 Fluorocarbons Liquid perfluorinated carbon compounds which may or may not contain a hetero atom such as nitrogen, oxygen or sulfur, but do not contain another halogen or hydrogen atom. This concept includes fluorocarbon emulsions, and fluorocarbon blood substitutes. Perfluorinated and related polyfluorinated chemicals are referred to as PFAS and are defined as chemicals with at least two adjacent carbon atoms, where one carbon is fully fluorinated and the other is at least partially fluorinated. Fluorocarbon,Fluorocarbon Emulsion,Fluorocarbon Emulsions,Fluorotelomer Phosphate Esters,N-Alkyl Perfluoroalkyl Sulfonamido Carboxylates,PFAS Per- and Polyfluoroalkyl Substances,PFC Perfluorinated Chemicals,PFECAs Perfluoropolyether Carboxylic Acids,Per- and Polyfluoroalkyl Substances,Perfluoroalkane Sulfonamides,Perfluoroalkyl Carboxylates,Perfluoroalkyl Ether Carboxylates,Perfluoroalkyl Polyether Carboxylates,Perfluorocarbon,Perfluorocarbons,Perfluoropolyether Carboxylic Acids,Polyfluorocarbons,Fluorinated Telomer Alcohols,Fluoro-Telomer Alcohols,Polyfluorinated Telomer Alcohols,Telomer Fluorocarbons,Acids, Perfluoropolyether Carboxylic,Alcohols, Fluorinated Telomer,Alcohols, Fluoro-Telomer,Alcohols, Polyfluorinated Telomer,Carboxylates, Perfluoroalkyl,Carboxylates, Perfluoroalkyl Ether,Carboxylates, Perfluoroalkyl Polyether,Carboxylic Acids, Perfluoropolyether,Chemicals, PFC Perfluorinated,Emulsion, Fluorocarbon,Emulsions, Fluorocarbon,Esters, Fluorotelomer Phosphate,Ether Carboxylates, Perfluoroalkyl,Fluoro Telomer Alcohols,Fluorocarbons, Telomer,N Alkyl Perfluoroalkyl Sulfonamido Carboxylates,PFAS Per and Polyfluoroalkyl Substances,Per and Polyfluoroalkyl Substances,Perfluorinated Chemicals, PFC,Phosphate Esters, Fluorotelomer,Polyether Carboxylates, Perfluoroalkyl,Sulfonamides, Perfluoroalkane,Telomer Alcohols, Fluorinated,Telomer Alcohols, Polyfluorinated
D006339 Heart Rate The number of times the HEART VENTRICLES contract per unit of time, usually per minute. Cardiac Rate,Chronotropism, Cardiac,Heart Rate Control,Heartbeat,Pulse Rate,Cardiac Chronotropy,Cardiac Chronotropism,Cardiac Rates,Chronotropy, Cardiac,Control, Heart Rate,Heart Rates,Heartbeats,Pulse Rates,Rate Control, Heart,Rate, Cardiac,Rate, Heart,Rate, Pulse

Related Publications

M R Wolfson, and J S Greenspan, and T H Shaffer
May 1987, Life sciences,
M R Wolfson, and J S Greenspan, and T H Shaffer
June 2005, Paediatric respiratory reviews,
M R Wolfson, and J S Greenspan, and T H Shaffer
December 1977, Kokyu to junkan. Respiration & circulation,
M R Wolfson, and J S Greenspan, and T H Shaffer
April 1950, Giornale di clinica medica,
M R Wolfson, and J S Greenspan, and T H Shaffer
September 1975, Thrombosis et diathesis haemorrhagica,
M R Wolfson, and J S Greenspan, and T H Shaffer
December 1985, Nihon Kyobu Shikkan Gakkai zasshi,
M R Wolfson, and J S Greenspan, and T H Shaffer
November 1952, Munchener medizinische Wochenschrift (1950),
M R Wolfson, and J S Greenspan, and T H Shaffer
September 1970, Archives of internal medicine,
M R Wolfson, and J S Greenspan, and T H Shaffer
June 1978, Nihon Kyobu Shikkan Gakkai zasshi,
M R Wolfson, and J S Greenspan, and T H Shaffer
July 2017, Ugeskrift for laeger,
Copied contents to your clipboard!