Effects of dietary calcium and phosphorus on vitamin D metabolism and calcium absorption in hamster. 1996

H P Schedl, and T Conway, and R L Horst, and D L Miller, and C K Brown
University of Iowa College of Medicine, Iowa City, 52242, USA.

We studied the following responses to restriction of dietary calcium and phosphorus in the growing hamster: (i) serum concentrations of calcium, inorganic phosphorus, magnesium, and vitamin D metabolites; and (ii) calcium transport by ileum. Diets fed were normal calcium with normal or low phosphorus or low calcium with normal or low phosphorus. We found serum 1 alpha,25-dihydroxycalciferol (1,25-[OH]2D) concentration did not differ significantly among the diet groups. Calcium absorption, measured as serosal/mucosal calcium concentration ratio produced by everted ileal sac, was greater in the low calcium, normal phosphorous group than in all other groups. The other groups did not differ from one another in calcium absorption. Feeding the low calcium, normal phosphorus diet increased inorganic phosphorus and magnesium but decreased calcium concentration in serum in comparison with the three other diets. Both low phosphorus diets were without effect on serum calcium, but the low calcium, low phosphorus diet increased serum inorganic phosphorus and magnesium above that of the normal calcium, low phosphorus diet. Ileal calcium absorption in hamster (i) was independent of serum 1,25-(OH)2D concentration; (ii) increased in response to low dietary calcium if dietary phosphorus was normal; and (iii) was independent of dietary calcium, if dietary phosphorus was low. Despite increased calcium absorption, serum calcium was decreased in the low calcium-normal phosphorus group as compared with all other groups. Feeding low calcium diets increased serum inorganic phosphorus and magnesium as compared with feeding the corresponding normal calcium diets (i.e., independently of whether dietary phosphorus content was normal or low). These studies demonstrate that the interrelationships between calcium absorption and vitamin D and mineral metabolism in hamster differ from other mammals.

UI MeSH Term Description Entries
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D008297 Male Males
D008647 Mesocricetus A genus in the order Rodentia and family Cricetidae. One species, Mesocricetus auratus or golden hamster is widely used in biomedical research. Hamsters, Golden,Hamsters, Golden Syrian,Hamsters, Syrian,Mesocricetus auratus,Syrian Golden Hamster,Syrian Hamster,Golden Hamster,Golden Hamster, Syrian,Golden Hamsters,Golden Syrian Hamsters,Hamster, Golden,Hamster, Syrian,Hamster, Syrian Golden,Syrian Hamsters
D002117 Calcitriol The physiologically active form of vitamin D. It is formed primarily in the kidney by enzymatic hydroxylation of 25-hydroxycholecalciferol (CALCIFEDIOL). Its production is stimulated by low blood calcium levels and parathyroid hormone. Calcitriol increases intestinal absorption of calcium and phosphorus, and in concert with parathyroid hormone increases bone resorption. 1 alpha,25-Dihydroxycholecalciferol,1 alpha,25-Dihydroxyvitamin D3,1, 25-(OH)2D3,1,25(OH)2D3,1,25-Dihydroxycholecalciferol,1,25-Dihydroxyvitamin D3,1 alpha, 25-dihydroxy-20-epi-Vitamin D3,1,25(OH)2-20epi-D3,1,25-dihydroxy-20-epi-Vitamin D3,20-epi-1alpha,25-dihydroxycholecaliferol,Bocatriol,Calcijex,Calcitriol KyraMed,Calcitriol-Nefro,Decostriol,MC-1288,MC1288,Osteotriol,Renatriol,Rocaltrol,Silkis,Sitriol,Soltriol,Tirocal,1 alpha,25 Dihydroxyvitamin D3,1,25 Dihydroxycholecalciferol,1,25 Dihydroxyvitamin D3,1,25 dihydroxy 20 epi Vitamin D3,Calcitriol Nefro,D3, 1 alpha,25-Dihydroxyvitamin,D3, 1,25-Dihydroxyvitamin,D3, 1,25-dihydroxy-20-epi-Vitamin,KyraMed, Calcitriol,MC 1288
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002136 Calcium, Dietary Calcium compounds in DIETARY SUPPLEMENTS or in food that supply the body with calcium. Dietary Calcium
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D000042 Absorption The physical or physiological processes by which substances, tissue, cells, etc. take up or take in other substances or energy.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014807 Vitamin D A vitamin that includes both CHOLECALCIFEROLS and ERGOCALCIFEROLS, which have the common effect of preventing or curing RICKETS in animals. It can also be viewed as a hormone since it can be formed in SKIN by action of ULTRAVIOLET RAYS upon the precursors, 7-dehydrocholesterol and ERGOSTEROL, and acts on VITAMIN D RECEPTORS to regulate CALCIUM in opposition to PARATHYROID HORMONE.

Related Publications

H P Schedl, and T Conway, and R L Horst, and D L Miller, and C K Brown
May 1978, Archives of biochemistry and biophysics,
H P Schedl, and T Conway, and R L Horst, and D L Miller, and C K Brown
December 1979, The American journal of medicine,
H P Schedl, and T Conway, and R L Horst, and D L Miller, and C K Brown
May 1983, Clinics in gastroenterology,
H P Schedl, and T Conway, and R L Horst, and D L Miller, and C K Brown
January 1982, Advances in experimental medicine and biology,
H P Schedl, and T Conway, and R L Horst, and D L Miller, and C K Brown
February 1982, Journal of clinical gastroenterology,
H P Schedl, and T Conway, and R L Horst, and D L Miller, and C K Brown
March 1977, Harefuah,
H P Schedl, and T Conway, and R L Horst, and D L Miller, and C K Brown
January 1945, Therapeutische Umschau und medizinische Bibliographie. Revue therapeutique et bibliographie medicale,
H P Schedl, and T Conway, and R L Horst, and D L Miller, and C K Brown
October 1951, Revue medicale de Liege,
H P Schedl, and T Conway, and R L Horst, and D L Miller, and C K Brown
July 1983, Federation proceedings,
H P Schedl, and T Conway, and R L Horst, and D L Miller, and C K Brown
February 1985, Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme,
Copied contents to your clipboard!