Engineering specificity for folate into dihydrofolate reductase from Escherichia coli. 1996

B A Posner, and L Li, and R Bethell, and T Tsuji, and S J Benkovic
Pharmacology Department, University of Texas Southwest Medical Center, Dallas 75235-9401, USA.

Despite several similarities in structure and kinetic behavior, the bacterial and vertebrate forms of the enzyme dihydrofolate reductase (DHFR) exhibit differential specificity for folate. In particular, avian DHFR is 400 times more specific for folate than the Escherichia coli reductase. We proposed to enhance the specificity of the E. coli reductase for folate by incorporating discrete elements of vertebrate secondary structure. Two vertebrate loop mutants, VLI and VLII containing 3-7 additional amino acid insertions, were constructed and characterized by using steady-state kinetics, spectrofluorimetric determination of ligand equilibrium dissociation constants, and circular dichroism spectroscopy. Remarkably, the VLI and VLII mutants are kinetically similar to wild-type E. coli reductase when dihydrofolate is the substrate, although VLII exhibits prolonged kinetic hysteresis. Moreover, the VLI dihydrofolate reductase is the first mutant form of E. coli DHFR to display enhanced specificity for folate [(kcat/Km)mutant/(kcat/Km)wt = 13]. A glycine-alanine loop (GAL) mutant was also constructed to test the design principles for the VLI mutant. In this mutant of the VLI reductase, all of the residues from positions 50 to 60, except the strictly conserved amino acids Leu-57 and Arg-60, were converted to either glycine or alanine. A detailed kinetic comparison of the GAL and wild-type reductases revealed that the mutations weaken the binding by both cofactor and substrate by up to 20-fold, but under saturating conditions the enzyme exhibits a kcat value nearly identical to that of the wild type. The rate of hydride transfer is reduced by a factor of 30, with a compensating increase in the dissociation rate for tetrahydrofolate. Although key stabilizing interactions have been sacrificed (it shows no activity toward folate), the maintenance of the correct register between key residues preserves the activity of the enzyme toward its natural substrate. Collectively, neither specific proximal point site mutations nor larger, more distal secondary structural substitutions are sufficient to confer a specificity for folate reduction that matches that observed with the avian enzyme. This is consistent with the hypothesis that the entire protein structure must contribute extensively to the enzyme's specificity.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D008956 Models, Chemical Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Chemical Models,Chemical Model,Model, Chemical
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009249 NADP Nicotinamide adenine dinucleotide phosphate. A coenzyme composed of ribosylnicotinamide 5'-phosphate (NMN) coupled by pyrophosphate linkage to the 5'-phosphate adenosine 2',5'-bisphosphate. It serves as an electron carrier in a number of reactions, being alternately oxidized (NADP+) and reduced (NADPH). (Dorland, 27th ed) Coenzyme II,Nicotinamide-Adenine Dinucleotide Phosphate,Triphosphopyridine Nucleotide,NADPH,Dinucleotide Phosphate, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide Phosphate,Nucleotide, Triphosphopyridine,Phosphate, Nicotinamide-Adenine Dinucleotide
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005492 Folic Acid A member of the vitamin B family that stimulates the hematopoietic system. It is present in the liver and kidney and is found in mushrooms, spinach, yeast, green leaves, and grasses (POACEAE). Folic acid is used in the treatment and prevention of folate deficiencies and megaloblastic anemia. Pteroylglutamic Acid,Vitamin M,Folacin,Folate,Folic Acid, (D)-Isomer,Folic Acid, (DL)-Isomer,Folic Acid, Calcium Salt (1:1),Folic Acid, Monopotassium Salt,Folic Acid, Monosodium Salt,Folic Acid, Potassium Salt,Folic Acid, Sodium Salt,Folvite,Vitamin B9,B9, Vitamin
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

B A Posner, and L Li, and R Bethell, and T Tsuji, and S J Benkovic
September 1986, Biochemistry,
B A Posner, and L Li, and R Bethell, and T Tsuji, and S J Benkovic
October 1992, Biological chemistry Hoppe-Seyler,
B A Posner, and L Li, and R Bethell, and T Tsuji, and S J Benkovic
May 1974, The Journal of biological chemistry,
B A Posner, and L Li, and R Bethell, and T Tsuji, and S J Benkovic
January 1985, Journal of cellular biochemistry,
B A Posner, and L Li, and R Bethell, and T Tsuji, and S J Benkovic
September 1994, Biochemistry,
B A Posner, and L Li, and R Bethell, and T Tsuji, and S J Benkovic
October 1998, Journal of biochemistry,
B A Posner, and L Li, and R Bethell, and T Tsuji, and S J Benkovic
October 1973, Biochemical and biophysical research communications,
B A Posner, and L Li, and R Bethell, and T Tsuji, and S J Benkovic
October 2000, Biochemistry,
B A Posner, and L Li, and R Bethell, and T Tsuji, and S J Benkovic
November 1975, Biochemical and biophysical research communications,
Copied contents to your clipboard!