Cloning of murine gp91phox cDNA and functional expression in a human X-linked chronic granulomatous disease cell line. 1996

H Björgvinsdóttir, and L Zhen, and M C Dinauer
Herman B Wells Center for Pediatric Research, Department of Pediatrics, James Whitcomb Riley Hospital for Children, Indiana University Medical Center, Indianapolis, USA.

The phagocyte cytochrome b558, a heterodimer comprised of gp91phox and p22phox, is a flavocytochrome that mediates the transfer of electrons from NADPH to molecular oxygen in the respiratory burst oxidase. The human gene encoding the glycosylated gp91phox subunit is the site of mutations in X-linked chronic granulomatous disease (CGD). Reverse transcriptase-polymerase chain reaction was used to obtain a full-length clone for the murine gp91phox cDNA, which was 87% identical to the human gp91phox cDNA. The encoded murine protein had 39 amino acids out of 570 that differed from the human, many of which were conservative substitutions. Nonconservative replacements occurred in hydrophilic regions outside of domains previously implicated in binding to NADPH, flavin, and the cytosolic oxidase subunit p47phox. Some substitutions altered potential N-glycosylation sites, which is likely to explain why the glycosylated murine protein migrates with an apparent molecular mass of 58 kD instead of 91 kD as seen for the human protein. Expression of murine gp91phox in a human myeloid cell line with a null gp91phox allele using a mammalian expression plasmid or a retroviral vector rescued stable expression of the p22phox subunit and fully reconstituted respiratory burst activity. This suggests that the murine gp91phox subunit forms a functional cytochrome b558 heterodimer with human oxidase subunits, consistent with the high degree of identity between the mouse and human proteins in domains implicated in cytochrome function.

UI MeSH Term Description Entries
D008562 Membrane Glycoproteins Glycoproteins found on the membrane or surface of cells. Cell Surface Glycoproteins,Surface Glycoproteins,Cell Surface Glycoprotein,Membrane Glycoprotein,Surface Glycoprotein,Glycoprotein, Cell Surface,Glycoprotein, Membrane,Glycoprotein, Surface,Glycoproteins, Cell Surface,Glycoproteins, Membrane,Glycoproteins, Surface,Surface Glycoprotein, Cell,Surface Glycoproteins, Cell
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009247 NADH, NADPH Oxidoreductases A group of oxidoreductases that act on NADH or NADPH. In general, enzymes using NADH or NADPH to reduce a substrate are classified according to the reverse reaction, in which NAD+ or NADP+ is formally regarded as an acceptor. This subclass includes only those enzymes in which some other redox carrier is the acceptor. (Enzyme Nomenclature, 1992, p100) EC 1.6. Oxidoreductases, NADH, NADPH,NADPH Oxidoreductases NADH,Oxidoreductases NADH, NADPH
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D003573 Cytochrome b Group Cytochromes (electron-transporting proteins) with protoheme (HEME B) as the prosthetic group. Cytochromes Type b,Cytochromes, Heme b,Group, Cytochrome b,Heme b Cytochromes,Type b, Cytochromes,b Cytochromes, Heme,b Group, Cytochrome
D005816 Genetic Complementation Test A test used to determine whether or not complementation (compensation in the form of dominance) will occur in a cell with a given mutant phenotype when another mutant genome, encoding the same mutant phenotype, is introduced into that cell. Allelism Test,Cis Test,Cis-Trans Test,Complementation Test,Trans Test,Allelism Tests,Cis Tests,Cis Trans Test,Cis-Trans Tests,Complementation Test, Genetic,Complementation Tests,Complementation Tests, Genetic,Genetic Complementation Tests,Trans Tests
D006031 Glycosylation The synthetic chemistry reaction or enzymatic reaction of adding carbohydrate or glycosyl groups. GLYCOSYLTRANSFERASES carry out the enzymatic glycosylation reactions. The spontaneous, non-enzymatic attachment of reducing sugars to free amino groups in proteins, lipids, or nucleic acids is called GLYCATION (see MAILLARD REACTION). Protein Glycosylation,Glycosylation, Protein

Related Publications

H Björgvinsdóttir, and L Zhen, and M C Dinauer
November 1993, Proceedings of the National Academy of Sciences of the United States of America,
H Björgvinsdóttir, and L Zhen, and M C Dinauer
August 2020, JACC. Case reports,
H Björgvinsdóttir, and L Zhen, and M C Dinauer
April 2016, Molecular therapy : the journal of the American Society of Gene Therapy,
H Björgvinsdóttir, and L Zhen, and M C Dinauer
February 1997, Biochemical and biophysical research communications,
H Björgvinsdóttir, and L Zhen, and M C Dinauer
September 2006, The Journal of small animal practice,
H Björgvinsdóttir, and L Zhen, and M C Dinauer
July 2015, International journal of hematology,
Copied contents to your clipboard!