The reductive half-reaction of xanthine oxidase. The involvement of prototropic equilibria in the course of the catalytic sequence. 1996

J H Kim, and M G Ryan, and H Knaut, and R Hille
Department of Medical Biochemistry, Ohio State University, Columbus, Ohio 43210, USA.

The pH dependence and solvent isotope sensitivity of three discrete steps in the reductive half-reaction of xanthine oxidase have been investigated. The pH dependence of both kcat/Km from steady-state experiments and kred/Kdfrom rapid reaction experiments with xanthine as substrate indicate that enzyme reacts preferentially with the neutral form of substrate and that an ionizable group in the active site having a pKa of approximately 6.6 must be unprotonated for reaction to take place. The solvent kinetic isotope effect on kred/Kd is 2.4, once a uniform shift on going to D2O of approximately 1 unit for both pKa values is taken into account. The pH dependence of the formation and decay of Ered-P formed in the course the reaction of xanthine oxidase with lumazine has also been examined. Formation of this complex exhibits bell-shaped pH dependence, with pKa values of 6.5 and 7.8, consistent with the results obtained with xanthine. Decay of the Ered-P complex is base-catalyzed with a pKa > 11 and exhibits a small solvent kinetic isotope effect of 1.7 at pH/D 8.5. By contrast, the catalytic intermediate giving rise to the "very rapid" EPR signal that is transiently observed in the course of the reaction of enzyme with the substrate 2-hydroxy-6-methylpurine is found to undergo acid-catalyzed breakdown with an associated pKa < 6. Formation and decay of this species exhibit solvent kinetic isotope effects of 2.0 and 3.5 at pH 10. The results are discussed in the context of a specific reaction mechanism for the reductive half-reaction of xanthine oxidase, in which discrete ionizations associated with the molybdenum center of the active site play critical roles in determining the magnitude of the rate constants by which the Mo(IV)-P and Mo(V)-P intermediates form and decay.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008982 Molybdenum A metallic element with the atomic symbol Mo, atomic number 42, and atomic weight 95.95. It is an essential trace element, being a component of the enzymes xanthine oxidase, aldehyde oxidase, and nitrate reductase. Molybdenum-98,Molybdenum 98
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D011621 Pteridines Compounds based on pyrazino[2,3-d]pyrimidine which is a pyrimidine fused to a pyrazine, containing four NITROGEN atoms. 1,3,5,8-Tetraazanaphthalene,Pteridine,Pteridinone,Pyrazino(2,3-d)pyrimidine,Pyrazinopyrimidine,Pyrazinopyrimidines,Pyrimido(4,5-b)pyrazine,Pteridinones
D011687 Purines A series of heterocyclic compounds that are variously substituted in nature and are known also as purine bases. They include ADENINE and GUANINE, constituents of nucleic acids, as well as many alkaloids such as CAFFEINE and THEOPHYLLINE. Uric acid is the metabolic end product of purine metabolism.
D002384 Catalysis The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction. Catalyses
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D012997 Solvents Liquids that dissolve other substances (solutes), generally solids, without any change in chemical composition, as, water containing sugar. (Grant & Hackh's Chemical Dictionary, 5th ed) Solvent

Related Publications

J H Kim, and M G Ryan, and H Knaut, and R Hille
March 1984, The Journal of biological chemistry,
J H Kim, and M G Ryan, and H Knaut, and R Hille
March 2005, Inorganic chemistry,
J H Kim, and M G Ryan, and H Knaut, and R Hille
August 1994, Biochemistry,
J H Kim, and M G Ryan, and H Knaut, and R Hille
February 1999, The Journal of biological chemistry,
J H Kim, and M G Ryan, and H Knaut, and R Hille
July 1994, The Journal of biological chemistry,
J H Kim, and M G Ryan, and H Knaut, and R Hille
September 1981, The Journal of biological chemistry,
J H Kim, and M G Ryan, and H Knaut, and R Hille
October 2009, Journal of the American Chemical Society,
J H Kim, and M G Ryan, and H Knaut, and R Hille
August 1965, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
Copied contents to your clipboard!