Reversal of hypercholesterolemia in low density lipoprotein receptor knockout mice by adenovirus-mediated gene transfer of the very low density lipoprotein receptor. 1996

K Kobayashi, and K Oka, and T Forte, and B Ishida, and B Teng, and K Ishimura-Oka, and M Nakamuta, and L Chan
Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030, USA.

We have used the technique of adenovirus-mediated gene transfer to study the in vivo function of the very low density lipoprotein receptor (VLDLR) in low density lipoprotein receptor (LDLR) knockout mice. We generated a replication-defective adenovirus (AdmVLDLR) containing mouse VLDLR cDNA driven by a cytomegalovirus promoter. Transduction of cultured Hepa (mouse hepatoma) cells and LDLR-deficient CHO-ldlA7 cells in vitro by the virus led to high-level expression of immunoreactive VLDLR proteins with molecular sizes of 143 kDa and 161 kDa. Digestion of the cell extract with the enzymes neuraminidase, N-glycanase, and O-glycanase resulted in the stepwise lowering of the apparent size of the 161-kDa species toward the 143-kDa species. LDLR (-/-) mice fed a 0.2% cholesterol diet were treated with a single intravenous injection of 3 x 10(9) plaque-forming units of AdmVLDLR. Control LDLR (-/-) mice received either phosphate-buffered saline or AdLacZ, a similar adenovirus containing the LacZ cDNA instead of mVLDLR cDNA. Comparison of the plasma lipids in the 3 groups of mice indicates that in the AdmVLDL animals, total cholesterol is reduced by approximately 50% at days 4 and 9 and returned toward control values on day 21. In these animals, there was also a approximately 30% reduction in plasma apolipoprotein (apo) E accompanied by a 90% fall in apoB-100 on day 4 of treatment. By FPLC analysis, the major reduction in plasma cholesterol in the AdmVLDLR animals was accounted for by a marked reduction in the intermediate density lipoprotein/low density lipoprotein (IDL/LDL) fraction. Plasma VLDL, IDL/LDL, and HDL were isolated from the three groups of animals by ultracentrifugal flotation. In the AdmVLDLR animals, there was substantial loss (approximately 65%) of protein and cholesterol mainly in the IDL/LDL fraction on days 4 and 9. Nondenaturing gradient gel electrophoresis indicates a preferential loss of the IDL peak although the LDL peak was also reduced. When 125I-IDL was administered intravenously into animals on day 4, the AdmVLDLR animals cleared the 125I-IDL at a rate 5-10 times higher than the AdLacZ animals. We conclude that adenovirus-mediated transfer of the VLDLR gene induces high-level hepatic expression of the VLDLR and results in a reversal of the hypercholesterolemia in 0.2% cholesterol diet-fed LDLR (-/-, mice. The VLDLR overexpression appears to greatly enhance the ability of these animals to clear IDL, resulting in a marked lowering of the plasma IDL/LDL. Further testing of the use of the VLDLR gene as a therapeutic gene for the treatment of hypercholesterolemia is warranted.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011973 Receptors, LDL Receptors on the plasma membrane of nonhepatic cells that specifically bind LDL. The receptors are localized in specialized regions called coated pits. Hypercholesteremia is caused by an allelic genetic defect of three types: 1, receptors do not bind to LDL; 2, there is reduced binding of LDL; and 3, there is normal binding but no internalization of LDL. In consequence, entry of cholesterol esters into the cell is impaired and the intracellular feedback by cholesterol on 3-hydroxy-3-methylglutaryl CoA reductase is lacking. LDL Receptors,Lipoprotein LDL Receptors,Receptors, Low Density Lipoprotein,LDL Receptor,LDL Receptors, Lipoprotein,Low Density Lipoprotein Receptor,Low Density Lipoprotein Receptors,Receptors, Lipoprotein, LDL,Receptor, LDL,Receptors, Lipoprotein LDL
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D002791 Cholesterol, Dietary Cholesterol present in food, especially in animal products. Dietary Cholesterol
D002853 Chromatography, Liquid Chromatographic techniques in which the mobile phase is a liquid. Liquid Chromatography
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D006938 Hyperlipoproteinemia Type II A group of familial disorders characterized by elevated circulating cholesterol contained in either LOW-DENSITY LIPOPROTEINS alone or also in VERY-LOW-DENSITY LIPOPROTEINS (pre-beta lipoproteins). Hyperbetalipoproteinemia,Hypercholesterolemia, Essential,Hypercholesterolemia, Familial,Apolipoprotein B-100, Familial Defective,Apolipoprotein B-100, Familial Ligand-Defective,Familial Combined Hyperlipoproteinemia,Hyper-Low Density Lipoproteinemia,Hyper-Low-Density-Lipoproteinemia,Hyper-beta-Lipoproteinemia,Hypercholesterolemia, Autosomal Dominant,Hypercholesterolemia, Autosomal Dominant, Type B,Hypercholesterolemic Xanthomatosis, Familial,Hyperlipoproteinemia Type 2,Hyperlipoproteinemia Type IIa,Hyperlipoproteinemia Type IIb,Hyperlipoproteinemia, Type II,Hyperlipoproteinemia, Type IIa,LDL Receptor Disorder,Apolipoprotein B 100, Familial Defective,Apolipoprotein B 100, Familial Ligand Defective,Autosomal Dominant Hypercholesterolemia,Autosomal Dominant Hypercholesterolemias,Combined Hyperlipoproteinemia, Familial,Combined Hyperlipoproteinemias, Familial,Density Lipoproteinemia, Hyper-Low,Density Lipoproteinemias, Hyper-Low,Disorder, LDL Receptor,Disorders, LDL Receptor,Dominant Hypercholesterolemia, Autosomal,Dominant Hypercholesterolemias, Autosomal,Essential Hypercholesterolemia,Essential Hypercholesterolemias,Familial Combined Hyperlipoproteinemias,Familial Hypercholesterolemia,Familial Hypercholesterolemias,Familial Hypercholesterolemic Xanthomatoses,Familial Hypercholesterolemic Xanthomatosis,Hyper Low Density Lipoproteinemia,Hyper beta Lipoproteinemia,Hyper-Low Density Lipoproteinemias,Hyper-Low-Density-Lipoproteinemias,Hyper-beta-Lipoproteinemias,Hyperbetalipoproteinemias,Hypercholesterolemias, Autosomal Dominant,Hypercholesterolemias, Essential,Hypercholesterolemias, Familial,Hypercholesterolemic Xanthomatoses, Familial,Hyperlipoproteinemia Type 2s,Hyperlipoproteinemia Type IIas,Hyperlipoproteinemia Type IIbs,Hyperlipoproteinemia Type IIs,Hyperlipoproteinemia, Familial Combined,Hyperlipoproteinemias, Familial Combined,Hyperlipoproteinemias, Type II,Hyperlipoproteinemias, Type IIa,LDL Receptor Disorders,Lipoproteinemia, Hyper-Low Density,Lipoproteinemias, Hyper-Low Density,Receptor Disorder, LDL,Receptor Disorders, LDL,Type 2, Hyperlipoproteinemia,Type II Hyperlipoproteinemia,Type II Hyperlipoproteinemias,Type IIa Hyperlipoproteinemia,Type IIa Hyperlipoproteinemias,Xanthomatoses, Familial Hypercholesterolemic,Xanthomatosis, Familial Hypercholesterolemic
D000256 Adenoviridae A family of non-enveloped viruses infecting mammals (MASTADENOVIRUS) and birds (AVIADENOVIRUS) or both (ATADENOVIRUS). Infections may be asymptomatic or result in a variety of diseases. Adenoviruses,Ichtadenovirus,Adenovirus,Ichtadenoviruses
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

K Kobayashi, and K Oka, and T Forte, and B Ishida, and B Teng, and K Ishimura-Oka, and M Nakamuta, and L Chan
August 1993, The Journal of clinical investigation,
K Kobayashi, and K Oka, and T Forte, and B Ishida, and B Teng, and K Ishimura-Oka, and M Nakamuta, and L Chan
January 2000, The journal of gene medicine,
K Kobayashi, and K Oka, and T Forte, and B Ishida, and B Teng, and K Ishimura-Oka, and M Nakamuta, and L Chan
April 1993, Proceedings of the National Academy of Sciences of the United States of America,
K Kobayashi, and K Oka, and T Forte, and B Ishida, and B Teng, and K Ishimura-Oka, and M Nakamuta, and L Chan
September 2004, British journal of haematology,
K Kobayashi, and K Oka, and T Forte, and B Ishida, and B Teng, and K Ishimura-Oka, and M Nakamuta, and L Chan
January 1998, Arteriosclerosis, thrombosis, and vascular biology,
K Kobayashi, and K Oka, and T Forte, and B Ishida, and B Teng, and K Ishimura-Oka, and M Nakamuta, and L Chan
April 1999, Pediatric research,
K Kobayashi, and K Oka, and T Forte, and B Ishida, and B Teng, and K Ishimura-Oka, and M Nakamuta, and L Chan
August 1998, Science in China. Series C, Life sciences,
K Kobayashi, and K Oka, and T Forte, and B Ishida, and B Teng, and K Ishimura-Oka, and M Nakamuta, and L Chan
June 2016, Journal of genetics,
K Kobayashi, and K Oka, and T Forte, and B Ishida, and B Teng, and K Ishimura-Oka, and M Nakamuta, and L Chan
November 2007, The Journal of nutritional biochemistry,
K Kobayashi, and K Oka, and T Forte, and B Ishida, and B Teng, and K Ishimura-Oka, and M Nakamuta, and L Chan
May 1994, La Revue du praticien,
Copied contents to your clipboard!