Androgen production by monkey luteal cell subpopulations at different stages of the menstrual cycle. 1996

S L Sanders, and R L Stouffer, and J D Brannian
Division of Reproductive Sciences, Oregon Regional Primate Research Center, Beaverton 97006, USA.

Androgens produced by the primate corpus luteum (CL) serve as precursors for estrogen synthesis; moreover, detection of androgen receptors in luteal tissue suggests a regulatory role within the CL. To determine the cellular source(s) and agonist regulation of androgen production during the lifespan of the primate CL, luteal tissues were collected from rhesus monkeys in the early (days 3-5 post-LH surge), mid (days 7-8), mid-late (days 11-12), and late (days 14-15) luteal phase of the menstrual cycle. Collagenase-dispersed cells (i.e., mixed cells) were analyzed by flow cytometry based on light scatter properties and sorted into populations of small (< or = 15 microns) and large (> 20 microns) luteal cells. Cells (n = 4 animals/stage) were incubated in Ham's F-10 and 0.1% BSA for 3 h at 37 C with or without hCG (100 ng/mL), PGE2 (14 mumol/L), or dibutyryl cAMP (dbcAMP; 5 mmol/L), and androstenedione (A4) and testosterone were measured. Basal A4 production by large cells was markedly higher (P < 0.05) than that by small cells (e.g. mid-late luteal phase, 821 +/- 188 vs. 69 +/- 25 pg/mL.5 x 10(4) cells/3 h; mean +/- SEM), whereas that by mixed cells was intermediate (317 +/- 205 pg/mL). In the early luteal phase, hCG stimulated A4 synthesis by mixed (1.6-fold; P < 0.05) and large (3.1-fold; P < 0.05) luteal cells, but not by small cells (1.3-fold). By the mid-late luteal phase, hCG did not increase A4 production by any cell type, although hCG responsiveness returned to large cells (2.0-fold increase; P < 0.05) by the late luteal phase. PGE2 responsiveness by cell types was similar to that of hCG, except large cell responsiveness did not return in the late luteal phase. In all cell types, dbcAMP stimulated the largest increase in A4 levels; in the mid-late luteal phase, small and large cells responded to dbcAMP with 8.2- and 3.0-fold increases (P < 0.05) in A4 production, respectively. When luteal cells were incubated with the steroidogenic substrates, 17 alpha-hydroxyprogesterone or 17 alpha-hydroxypregnenolone (1 mumol/L), large cells produced much more (P < 0.05) A4, testosterone, estrone, and estradiol than small cells. Both substrates elicited similar patterns of androgen production, with A4 synthesis predominant in all luteal cell types. Thus, cell subpopulations in the primate CL can be distinguished by their ability to produce androgen and estrogen. Changes in agonist-responsive androgen production may influence the local steroid milieu and function of the CL during the menstrual cycle.

UI MeSH Term Description Entries
D008183 Luteal Phase The period in the MENSTRUAL CYCLE that follows OVULATION, characterized by the development of CORPUS LUTEUM, increase in PROGESTERONE production by the OVARY and secretion by the glandular epithelium of the ENDOMETRIUM. The luteal phase begins with ovulation and ends with the onset of MENSTRUATION. Menstrual Cycle, Luteal Phase,Menstrual Cycle, Secretory Phase,Menstrual Secretory Phase,Postovulatory Phase,Phase, Luteal,Phase, Postovulatory,Secretory Phase, Menstrual
D008184 Luteal Cells PROGESTERONE-producing cells in the CORPUS LUTEUM. The large luteal cells derive from the GRANULOSA CELLS. The small luteal cells derive from the THECA CELLS. Lutein Cells,Granulosa-Luteal Cells,Granulosa-Lutein Cells,Large Luteal Cells,Small Luteal Cells,Theca-Luteal cells,Theca-Lutein Cells,Cell, Granulosa-Luteal,Cell, Granulosa-Lutein,Cell, Large Luteal,Cell, Luteal,Cell, Lutein,Cell, Small Luteal,Cell, Theca-Lutein,Cells, Granulosa-Luteal,Cells, Granulosa-Lutein,Cells, Large Luteal,Cells, Luteal,Cells, Lutein,Cells, Small Luteal,Cells, Theca-Lutein,Granulosa Luteal Cells,Granulosa Lutein Cells,Granulosa-Luteal Cell,Granulosa-Lutein Cell,Large Luteal Cell,Luteal Cell,Luteal Cell, Large,Luteal Cell, Small,Luteal Cells, Large,Luteal Cells, Small,Lutein Cell,Small Luteal Cell,Theca Luteal cells,Theca Lutein Cells,Theca-Luteal cell,Theca-Lutein Cell,cell, Theca-Luteal,cells, Theca-Luteal
D008253 Macaca mulatta A species of the genus MACACA inhabiting India, China, and other parts of Asia. The species is used extensively in biomedical research and adapts very well to living with humans. Chinese Rhesus Macaques,Macaca mulatta lasiota,Monkey, Rhesus,Rhesus Monkey,Rhesus Macaque,Chinese Rhesus Macaque,Macaca mulatta lasiotas,Macaque, Rhesus,Rhesus Macaque, Chinese,Rhesus Macaques,Rhesus Macaques, Chinese,Rhesus Monkeys
D008597 Menstrual Cycle The period from onset of one menstrual bleeding (MENSTRUATION) to the next in an ovulating woman or female primate. The menstrual cycle is regulated by endocrine interactions of the HYPOTHALAMUS; the PITUITARY GLAND; the ovaries; and the genital tract. The menstrual cycle is divided by OVULATION into two phases. Based on the endocrine status of the OVARY, there is a FOLLICULAR PHASE and a LUTEAL PHASE. Based on the response in the ENDOMETRIUM, the menstrual cycle is divided into a proliferative and a secretory phase. Endometrial Cycle,Ovarian Cycle,Cycle, Endometrial,Cycle, Menstrual,Cycle, Ovarian,Cycles, Endometrial,Cycles, Menstrual,Cycles, Ovarian,Endometrial Cycles,Menstrual Cycles,Ovarian Cycles
D003994 Bucladesine A cyclic nucleotide derivative that mimics the action of endogenous CYCLIC AMP and is capable of permeating the cell membrane. It has vasodilator properties and is used as a cardiac stimulant. (From Merck Index, 11th ed) Dibutyryl Adenosine-3',5'-Monophosphate,Dibutyryl Cyclic AMP,(But)(2) cAMP,Bucladesine, Barium (1:1) Salt,Bucladesine, Disodium Salt,Bucladesine, Monosodium Salt,Bucladesine, Sodium Salt,DBcAMP,Dibutyryl Adenosine 3,5 Monophosphate,N',O'-Dibutyryl-cAMP,N(6),0(2')-Dibutyryl Cyclic AMP,AMP, Dibutyryl Cyclic,Adenosine-3',5'-Monophosphate, Dibutyryl,Cyclic AMP, Dibutyryl,Dibutyryl Adenosine 3',5' Monophosphate,Disodium Salt Bucladesine,Monosodium Salt Bucladesine,N',O' Dibutyryl cAMP,Sodium Salt Bucladesine
D004958 Estradiol The 17-beta-isomer of estradiol, an aromatized C18 steroid with hydroxyl group at 3-beta- and 17-beta-position. Estradiol-17-beta is the most potent form of mammalian estrogenic steroids. 17 beta-Estradiol,Estradiol-17 beta,Oestradiol,17 beta-Oestradiol,Aerodiol,Delestrogen,Estrace,Estraderm TTS,Estradiol Anhydrous,Estradiol Hemihydrate,Estradiol Hemihydrate, (17 alpha)-Isomer,Estradiol Monohydrate,Estradiol Valerate,Estradiol Valeriante,Estradiol, (+-)-Isomer,Estradiol, (-)-Isomer,Estradiol, (16 alpha,17 alpha)-Isomer,Estradiol, (16 alpha,17 beta)-Isomer,Estradiol, (17-alpha)-Isomer,Estradiol, (8 alpha,17 beta)-(+-)-Isomer,Estradiol, (8 alpha,17 beta)-Isomer,Estradiol, (9 beta,17 alpha)-Isomer,Estradiol, (9 beta,17 beta)-Isomer,Estradiol, Monosodium Salt,Estradiol, Sodium Salt,Estradiol-17 alpha,Estradiol-17beta,Ovocyclin,Progynon-Depot,Progynova,Vivelle,17 beta Estradiol,17 beta Oestradiol,Estradiol 17 alpha,Estradiol 17 beta,Estradiol 17beta,Progynon Depot
D004970 Estrone An aromatized C18 steroid with a 3-hydroxyl group and a 17-ketone, a major mammalian estrogen. It is converted from ANDROSTENEDIONE directly, or from TESTOSTERONE via ESTRADIOL. In humans, it is produced primarily by the cyclic ovaries, PLACENTA, and the ADIPOSE TISSUE of men and postmenopausal women. Folliculin (Hormone),Estrone, (+-)-Isomer,Estrone, (8 alpha)-Isomer,Estrone, (9 beta)-Isomer,Estrovarin,Kestrone,Unigen,Wehgen
D005260 Female Females
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D006063 Chorionic Gonadotropin A gonadotropic glycoprotein hormone produced primarily by the PLACENTA. Similar to the pituitary LUTEINIZING HORMONE in structure and function, chorionic gonadotropin is involved in maintaining the CORPUS LUTEUM during pregnancy. CG consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is virtually identical to the alpha subunits of the three pituitary glycoprotein hormones (TSH, LH, and FSH), but the beta subunit is unique and confers its biological specificity (CHORIONIC GONADOTROPIN, BETA SUBUNIT, HUMAN). Chorionic Gonadotropin, Human,HCG (Human Chorionic Gonadotropin),Biogonadil,Choriogonadotropin,Choriogonin,Chorulon,Gonabion,Human Chorionic Gonadotropin,Pregnyl,Gonadotropin, Chorionic,Gonadotropin, Human Chorionic

Related Publications

S L Sanders, and R L Stouffer, and J D Brannian
December 2010, Reproduction in domestic animals = Zuchthygiene,
S L Sanders, and R L Stouffer, and J D Brannian
October 1981, International journal of gynaecology and obstetrics: the official organ of the International Federation of Gynaecology and Obstetrics,
S L Sanders, and R L Stouffer, and J D Brannian
January 1978, Research in reproduction,
S L Sanders, and R L Stouffer, and J D Brannian
May 1989, Biology of reproduction,
S L Sanders, and R L Stouffer, and J D Brannian
January 1973, Endokrynologia Polska,
S L Sanders, and R L Stouffer, and J D Brannian
December 1970, Radiation research,
Copied contents to your clipboard!