Effect of GroEL on the re-folding kinetics of alpha-lactalbumin. 1996

K Katsumata, and A Okazaki, and K Kuwajima
Department of Physics, School of Science, University of Tokyo, Japan.

The effect of GroEL on the re-folding kinetics of apo- and holo-alpha-lactalbumin from the acidic molten globule state has been investigated by stopped-flow fluorescence measurements. GroEL retards the re-folding of apo-alpha-lactalbumin by interacting with the molten globule state of the protein. The binding constant was estimated to be in the order of 10(5) M-1 by analyzing the kinetic data quantitatively and was found to be much weaker than the binding between GroEL and disulfide-bond reduced alpha-lactalbumin, whose binding constant is in the order of 10(7) M-1. Our present results, together with the previous results, suggest that the state recognized by GroEL is not unique and that the binding strength varies with the state of a target protein. The binding between GroEL and the molten globule state of apo-alpha-lactalbumin becomes stronger with an increasing salt concentration; the binding constant is increased tenfold (from 10(5) to 10(6) M-1) by an increase in salt concentration from 0.05 to 0.25 M. The study of the effect of GroEL on the re-folding kinetics of holo-alpha-lactalbumin, which is represented by a bi-phasic process, shows that the slow phase is affected by GroEL in the same manner as observed in the apo-alpha-lactalbumin re-folding but that the fast phase is not affected by GroEL at all. This indicates that the binding rate of GroEL is faster than the slow phase but slower than the fast phase of the re-folding, and the bi-molecular rate constant of GroEL binding to the molten globule state of alpha-lactalbumin was estimated to be in the order of 10(6) M-1S-1.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007768 Lactalbumin A major protein fraction of milk obtained from the WHEY. alpha-Lactalbumin,alpha-Lactalbumin A,alpha-Lactalbumin B,alpha-Lactalbumin C,alpha Lactalbumin,alpha Lactalbumin A,alpha Lactalbumin B,alpha Lactalbumin C
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001667 Binding, Competitive The interaction of two or more substrates or ligands with the same binding site. The displacement of one by the other is used in quantitative and selective affinity measurements. Competitive Binding
D012710 Serum Albumin, Bovine Serum albumin from cows, commonly used in in vitro biological studies. (From Stedman, 25th ed) Fetal Bovine Serum,Fetal Calf Serum,Albumin Bovine,Bovine Albumin,Bovine Serum Albumin,Albumin, Bovine,Albumin, Bovine Serum,Bovine Serum, Fetal,Bovine, Albumin,Calf Serum, Fetal,Serum, Fetal Bovine,Serum, Fetal Calf
D013884 Thiosulfate Sulfurtransferase An enzyme that catalyzes the transfer of the planetary sulfur atom of thiosulfate ion to cyanide ion to form thiocyanate ion. EC 2.8.1.1. Rhodanese,Thiosulfate Cyanide Transsulphurase,Thiosulfate Sulphurtransferase,Cyanide Transsulphurase, Thiosulfate,Sulfurtransferase, Thiosulfate,Sulphurtransferase, Thiosulfate,Transsulphurase, Thiosulfate Cyanide

Related Publications

K Katsumata, and A Okazaki, and K Kuwajima
November 2004, Proteins,
K Katsumata, and A Okazaki, and K Kuwajima
August 1998, Journal of biochemistry,
K Katsumata, and A Okazaki, and K Kuwajima
December 1994, Nature,
K Katsumata, and A Okazaki, and K Kuwajima
July 1978, Biophysical chemistry,
K Katsumata, and A Okazaki, and K Kuwajima
January 1991, Journal of chromatography,
K Katsumata, and A Okazaki, and K Kuwajima
August 1995, The Journal of biological chemistry,
K Katsumata, and A Okazaki, and K Kuwajima
January 1988, Biofizika,
K Katsumata, and A Okazaki, and K Kuwajima
October 2002, Proteins,
Copied contents to your clipboard!