Prevention of murine radiogenic thymic lymphomas by tumor necrosis factor or by marrow grafting. 1996

C Humblet, and R Greimers, and P Delvenne, and J Deman, and J Boniver, and M P Defresne
Laboratory of Pathological Anatomy and Cytopathology, University Hospital of Liège, Belgium.

BACKGROUND Split-dose irradiation (1.75 Gy given weekly for 4 weeks) of C57BL/Ka mice induces the emergence of preleukemic cells (PLCs). These cells develop into leukemic cells after a latency period of 3-6 months. The survival and transformation of PLCs are dependent on radiation-induced alterations of the thymic epithelium and of resident lymphocyte (i.e., thymocyte) subpopulations in the thymus. PLCs can be eliminated, concomitantly with the restoration of the thymus, by grafting bone marrow cells immediately after the last irradiation. Our hypothesis was that any agent able to restore the thymus after leukemogenic irradiation would exert the same effects as a bone marrow graft. Tumor necrosis factor-alpha (TNF-alpha) is one such possible agent, since it has been shown to modulate some functions of the thymic epithelium and thymocyte subpopulations. OBJECTIVE The goal of this study was to assess the ability of repeated intraperitoneal injections of TNF-alpha to functionally replace bone marrow transplantation in the restoration of normal intrathymic lymphopoiesis and in the prevention of thymic lymphomas in split-dose-irradiated mice. METHODS We replaced the bone marrow graft with repeated injections of TNF-alpha (25 000 U/injection) in the split-dose-irradiated (4 x 1.75 Gy) C57BL/Ka mouse model. We analyzed the expression of the cell differentiation markers CD4 and CD8 on thymocytes by flow cytometry. We also studied the thymic environment by isolating thymic nurse cells, the bone marrow prothymocyte activity by analyzing thymic repopulation, and the evolution of PLCs by an in vivo transplantation assay. Local production of TNF-alpha after bone marrow grafting was examined by in situ hybridization. Injections of anti-TNF-alpha antibodies were given to split-dose-irradiated mice to test the effect of neutralizing TNF-alpha in vivo. One-way analysis of variance and Newman-Keuls two-tailed tests were used to test statistical significance. RESULTS Multiple injections of TNF-alpha into split-dose-irradiated mice did not influence bone marrow prothymocyte activity but restored thymocyte subpopulations and thymic epithelium, induced the disappearance of PLCs, and prevented the development of lymphomas. Moreover, a bone marrow graft significantly stimulated intrathymic production of TNF-alpha messenger RNA (P<.01), and anti-TNF-alpha antibodies partially inhibited the antilymphomatous effects of bone marrow graft in split-dose-irradiated mice (P<.05). CONCLUSIONS These data strongly suggest that TNF-alpha is a mediator that is involved in the mechanisms by which bone marrow transplantation functions to prevent thymic lymphomas in split-dose-irradiated mice. CONCLUSIONS Cytokines might be used in some biological systems, particularly in the hemopoietic system, as a therapeutic agent for the secondary prevention of cancer.

UI MeSH Term Description Entries
D008223 Lymphoma A general term for various neoplastic diseases of the lymphoid tissue. Germinoblastoma,Lymphoma, Malignant,Reticulolymphosarcoma,Sarcoma, Germinoblastic,Germinoblastic Sarcoma,Germinoblastic Sarcomas,Germinoblastomas,Lymphomas,Lymphomas, Malignant,Malignant Lymphoma,Malignant Lymphomas,Reticulolymphosarcomas,Sarcomas, Germinoblastic
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D009381 Neoplasms, Radiation-Induced Tumors, cancer or other neoplasms produced by exposure to ionizing or non-ionizing radiation. Radiation-Induced Cancer,Cancer, Radiation-Induced,Radiation-Induced Neoplasms,Cancer, Radiation Induced,Cancers, Radiation-Induced,Neoplasm, Radiation-Induced,Neoplasms, Radiation Induced,Radiation Induced Cancer,Radiation Induced Neoplasms,Radiation-Induced Cancers,Radiation-Induced Neoplasm
D011879 Radiotherapy Dosage The total amount of radiation absorbed by tissues as a result of radiotherapy. Dosage, Radiotherapy,Dosages, Radiotherapy,Radiotherapy Dosages
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013953 Thymus Neoplasms Tumors or cancer of the THYMUS GLAND. Cancer of Thymus,Thymus Cancer,Thymus Tumors,Cancer of the Thymus,Neoplasms, Thymic,Neoplasms, Thymus,Thymic Cancer,Thymic Neoplasms,Thymic Tumors,Cancer, Thymic,Cancer, Thymus,Cancers, Thymic,Cancers, Thymus,Neoplasm, Thymic,Neoplasm, Thymus,Thymic Cancers,Thymic Neoplasm,Thymic Tumor,Thymus Cancers,Thymus Neoplasm,Thymus Tumor,Tumor, Thymic,Tumor, Thymus,Tumors, Thymic,Tumors, Thymus
D014409 Tumor Necrosis Factor-alpha Serum glycoprotein produced by activated MACROPHAGES and other mammalian MONONUCLEAR LEUKOCYTES. It has necrotizing activity against tumor cell lines and increases ability to reject tumor transplants. Also known as TNF-alpha, it is only 30% homologous to TNF-beta (LYMPHOTOXIN), but they share TNF RECEPTORS. Cachectin,TNF-alpha,Tumor Necrosis Factor Ligand Superfamily Member 2,Cachectin-Tumor Necrosis Factor,TNF Superfamily, Member 2,TNFalpha,Tumor Necrosis Factor,Cachectin Tumor Necrosis Factor,Tumor Necrosis Factor alpha
D015994 Incidence The number of new cases of a given disease during a given period in a specified population. It also is used for the rate at which new events occur in a defined population. It is differentiated from PREVALENCE, which refers to all cases in the population at a given time. Attack Rate,Cumulative Incidence,Incidence Proportion,Incidence Rate,Person-time Rate,Secondary Attack Rate,Attack Rate, Secondary,Attack Rates,Cumulative Incidences,Incidence Proportions,Incidence Rates,Incidence, Cumulative,Incidences,Person time Rate,Person-time Rates,Proportion, Incidence,Rate, Attack,Rate, Incidence,Rate, Person-time,Rate, Secondary Attack,Secondary Attack Rates

Related Publications

C Humblet, and R Greimers, and P Delvenne, and J Deman, and J Boniver, and M P Defresne
January 1986, Journal of immunopharmacology,
C Humblet, and R Greimers, and P Delvenne, and J Deman, and J Boniver, and M P Defresne
April 2002, Cytokine & growth factor reviews,
C Humblet, and R Greimers, and P Delvenne, and J Deman, and J Boniver, and M P Defresne
March 1986, Transplantation,
C Humblet, and R Greimers, and P Delvenne, and J Deman, and J Boniver, and M P Defresne
August 1989, Leukemia,
C Humblet, and R Greimers, and P Delvenne, and J Deman, and J Boniver, and M P Defresne
July 1994, Immunology letters,
C Humblet, and R Greimers, and P Delvenne, and J Deman, and J Boniver, and M P Defresne
December 2014, Zhonghua xue ye xue za zhi = Zhonghua xueyexue zazhi,
C Humblet, and R Greimers, and P Delvenne, and J Deman, and J Boniver, and M P Defresne
May 1990, Journal of immunology (Baltimore, Md. : 1950),
C Humblet, and R Greimers, and P Delvenne, and J Deman, and J Boniver, and M P Defresne
January 1989, The Journal of infectious diseases,
C Humblet, and R Greimers, and P Delvenne, and J Deman, and J Boniver, and M P Defresne
January 1991, Revue roumaine de virologie (Bucharest, Romania : 1990),
C Humblet, and R Greimers, and P Delvenne, and J Deman, and J Boniver, and M P Defresne
June 1977, Infection and immunity,
Copied contents to your clipboard!