A simple protein folding algorithm using a binary code and secondary structure constraints. 1995

S Sun, and P D Thomas, and K A Dill
Department of Pharmaceutical Chemistry, University of California San Francisco 94118, USA.

We describe an algorithm to predict tertiary structures of small proteins. In contrast to most current folding algorithms, it uses very few energy parameters. Given the secondary structural elements in the sequence--alpha-helices and beta-strands--the algorithm searches the remaining conformational space of a simplified real-space representation of chains to find a minimum energy of an exceedingly simple potential function. The potential is based only on a single type of favorable interaction between hydrophobic residues, an unfavorable excluded volume term of spatial overlaps and, for sheet proteins, an interstrand hydrogen bond interaction. Where appropriate, the known disulfide bonds are constrained by a square-law potential. Conformations are searched by a genetic algorithm. The model predicts reasonably well the known tertiary folds of seven out of the 10 small proteins we consider. We draw two conclusions. First, for the proteins we tested, this exceedingly simple potential function is no worse than others having hundreds of energy parameters in finding the right general tertiary structures. Second, despite its simplicity, the potential function is not the weak link in this algorithm. Differences between our predicted structures and the correct targets can be ascribed to shortcomings in our search strategy. This potential function may be useful for testing other conformational search strategies.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D006860 Hydrogen Bonding A low-energy attractive force between hydrogen and another element. It plays a major role in determining the properties of water, proteins, and other compounds. Hydrogen Bonds,Bond, Hydrogen,Hydrogen Bond
D000465 Algorithms A procedure consisting of a sequence of algebraic formulas and/or logical steps to calculate or determine a given task. Algorithm
D013816 Thermodynamics A rigorously mathematical analysis of energy relationships (heat, work, temperature, and equilibrium). It describes systems whose states are determined by thermal parameters, such as temperature, in addition to mechanical and electromagnetic parameters. (From Hawley's Condensed Chemical Dictionary, 12th ed) Thermodynamic
D015203 Reproducibility of Results The statistical reproducibility of measurements (often in a clinical context), including the testing of instrumentation or techniques to obtain reproducible results. The concept includes reproducibility of physiological measurements, which may be used to develop rules to assess probability or prognosis, or response to a stimulus; reproducibility of occurrence of a condition; and reproducibility of experimental results. Reliability and Validity,Reliability of Result,Reproducibility Of Result,Reproducibility of Finding,Validity of Result,Validity of Results,Face Validity,Reliability (Epidemiology),Reliability of Results,Reproducibility of Findings,Test-Retest Reliability,Validity (Epidemiology),Finding Reproducibilities,Finding Reproducibility,Of Result, Reproducibility,Of Results, Reproducibility,Reliabilities, Test-Retest,Reliability, Test-Retest,Result Reliabilities,Result Reliability,Result Validities,Result Validity,Result, Reproducibility Of,Results, Reproducibility Of,Test Retest Reliability,Validity and Reliability,Validity, Face
D016335 Zinc Fingers Motifs in DNA- and RNA-binding proteins whose amino acids are folded into a single structural unit around a zinc atom. In the classic zinc finger, one zinc atom is bound to two cysteines and two histidines. In between the cysteines and histidines are 12 residues which form a DNA binding fingertip. By variations in the composition of the sequences in the fingertip and the number and spacing of tandem repeats of the motif, zinc fingers can form a large number of different sequence specific binding sites. Zinc Finger DNA-Binding Domains,Zinc Finger Motifs,Finger, Zinc,Fingers, Zinc,Motif, Zinc Finger,Motifs, Zinc Finger,Zinc Finger,Zinc Finger DNA Binding Domains,Zinc Finger Motif
D017433 Protein Structure, Secondary The level of protein structure in which regular hydrogen-bond interactions within contiguous stretches of polypeptide chain give rise to ALPHA-HELICES; BETA-STRANDS (which align to form BETA-SHEETS), or other types of coils. This is the first folding level of protein conformation. Secondary Protein Structure,Protein Structures, Secondary,Secondary Protein Structures,Structure, Secondary Protein,Structures, Secondary Protein

Related Publications

S Sun, and P D Thomas, and K A Dill
June 2011, Current opinion in structural biology,
S Sun, and P D Thomas, and K A Dill
January 1997, Proteins,
S Sun, and P D Thomas, and K A Dill
January 2003, Tsitologiia,
S Sun, and P D Thomas, and K A Dill
January 2004, Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference,
S Sun, and P D Thomas, and K A Dill
March 2010, Bioinformatics (Oxford, England),
S Sun, and P D Thomas, and K A Dill
November 1998, Journal of protein chemistry,
S Sun, and P D Thomas, and K A Dill
May 2008, Proteins,
S Sun, and P D Thomas, and K A Dill
October 1992, The Journal of biological chemistry,
Copied contents to your clipboard!