Antisense globin RNA in mouse erythroid tissues: structure, origin, and possible function. 1996

V Volloch, and B Schweitzer, and S Rits
Boston Biomedical Research Institute, Massachusetts 02114, USA.

The aim of the experiments described in this paper was to test for the presence of antisense globin RNA in mouse erythroid tissues and, if found, to characterize these molecules. The present study made use of a multistep procedure in which a molecular tag is attached to cellular RNA by ligation with a defined ribooligonucleotide. The act of ligation preserves the termini of RNA molecules, which become the junctions between cellular RNAs and the ligated ribooligonucleotide. It also unambiguously preserves the identity of cellular RNA as a sense or antisense molecule through all subsequent manipulations. Using this approach, we identified and characterized antisense beta-globin RNA in erythroid spleen cells and reticulocytes from anemic mice. We show in this paper that the antisense globin RNA is fully complementary to spliced globin mRNA, indicative of the template/transcript relationship. It terminates at the 5' end with a uridylate stretch, reflecting the presence of poly(A) at the 3' end of the sense globin mRNA. With respect to the structure of their 3' termini, antisense globin RNA can be divided into three categories: full-size molecules corresponding precisely to globin mRNA, truncated molecules lacking predominantly 14 3'-terminal nucleotides, and extended antisense RNA containing 17 additional 3'-terminal nucleotides. The full-size antisense globin RNA contains two 14-nt-long complementary sequences within its 3'-terminal segment corresponding to the 5'-untranslated region of globin mRNA. This, together with the nature of the predominant truncation, suggests a mechanism by which antisense RNA might give rise to new sense-strand globin mRNA.

UI MeSH Term Description Entries
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009843 Oligoribonucleotides A group of ribonucleotides (up to 12) in which the phosphate residues of each ribonucleotide act as bridges in forming diester linkages between the ribose moieties.
D011072 Poly U A group of uridine ribonucleotides in which the phosphate residues of each uridine ribonucleotide act as bridges in forming diester linkages between the ribose moieties. Polyuridylic Acids,Uracil Polynucleotides,Poly(rU),Acids, Polyuridylic,Polynucleotides, Uracil
D012156 Reticulocytes Immature ERYTHROCYTES. In humans, these are ERYTHROID CELLS that have just undergone extrusion of their CELL NUCLEUS. They still contain some organelles that gradually decrease in number as the cells mature. RIBOSOMES are last to disappear. Certain staining techniques cause components of the ribosomes to precipitate into characteristic "reticulum" (not the same as the ENDOPLASMIC RETICULUM), hence the name reticulocytes. Reticulocyte
D004920 Erythropoiesis The production of red blood cells (ERYTHROCYTES). In humans, erythrocytes are produced by the YOLK SAC in the first trimester; by the liver in the second trimester; by the BONE MARROW in the third trimester and after birth. In normal individuals, the erythrocyte count in the peripheral blood remains relatively constant implying a balance between the rate of erythrocyte production and rate of destruction. Erythropoieses
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D005914 Globins A superfamily of proteins containing the globin fold which is composed of 6-8 alpha helices arranged in a characterstic HEME enclosing structure. Globin
D000740 Anemia A reduction in the number of circulating ERYTHROCYTES or in the quantity of HEMOGLOBIN. Anemias
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

V Volloch, and B Schweitzer, and S Rits
February 1976, Cell,
V Volloch, and B Schweitzer, and S Rits
July 1977, Cell,
V Volloch, and B Schweitzer, and S Rits
January 1974, Transactions of the Association of American Physicians,
V Volloch, and B Schweitzer, and S Rits
January 1977, Proceedings of the National Academy of Sciences of the United States of America,
V Volloch, and B Schweitzer, and S Rits
March 2000, Gene therapy,
V Volloch, and B Schweitzer, and S Rits
January 1978, Progress in clinical and biological research,
V Volloch, and B Schweitzer, and S Rits
May 2007, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
V Volloch, and B Schweitzer, and S Rits
August 1975, The Journal of biological chemistry,
V Volloch, and B Schweitzer, and S Rits
February 2004, Cellular and molecular biology (Noisy-le-Grand, France),
V Volloch, and B Schweitzer, and S Rits
March 1977, The Journal of biological chemistry,
Copied contents to your clipboard!