Oxidation of omega-oxo fatty acids by cytochrome P450BM-3 (CYP102). 1996

S C Davis, and Z Sui, and J A Peterson, and P R Ortiz de Montellano
Department of Pharmaceutical Chemistry, School of Pharmacy, and Liver Center, University of California, San Francisco 94143-0446, USA.

Cytochrome P450 enzymes oxidize aldehydes either to the corresponding acid or, via a decarboxylation mechanism, to an olefin one carbon shorter than the parent substrate. To explore the factors that control partitioning between these two pathways, we have examined the cytochrome P450BM-3 (CYP102)-catalyzed oxidation of fatty acids with a terminal aldehyde group. P450BM-3 oxidizes 18-oxooctadecanoic, 16-oxohexadecanoic, 14-oxotetradecanoic, and 12-oxododecanoic acids exclusively to the corresponding alpha,omega-diacids. The rates of these oxidations decrease in the order C16 > C18 approximately = C14 > C12. No kinetic isotope effect is observed nor is the catalytic outcome altered when the aldehyde hydrogen is replaced by a deuterium in 16-oxohexadecanoic acid. The only product observed with 16-oxohexadecanoic acid is the diacid even when a 13,14-double bond or 15-methyl groups, substitutions that should stabilize the proposed radical intermediate generated by decarboxylation, are present. The oxidation of 16-oxohexadecanoic acid is not supported by H2O2. The results demonstrate that aldehyde oxidation by cytochrome P450BM-3 is insensitive to changes in substrate structure expected to stabilize the transition state for decarboxylation. Decarboxylation, in contrast to the oxidation of aldehydes to acids, depends on specific substrate-protein interactions and is enzyme-specific.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008956 Models, Chemical Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Chemical Models,Chemical Model,Model, Chemical
D009251 NADPH-Ferrihemoprotein Reductase A flavoprotein that catalyzes the reduction of heme-thiolate-dependent monooxygenases and is part of the microsomal hydroxylating system. EC 1.6.2.4. Cytochrome P-450 Reductase,Ferrihemoprotein P-450 Reductase,NADPH Cytochrome P-450 Oxidoreductase,NADPH Cytochrome P-450 Reductase,NADPH Cytochrome c Reductase,Cytochrome P-450 Oxidase,Cytochrome P450 Reductase,Ferrihemoprotein P450 Reductase,NADPH Cytochrome P450 Oxidoreductase,NADPH Cytochrome P450 Reductase,NADPH-Cytochrome P450 Reductase,NADPH-P450 Reductase,Cytochrome P 450 Oxidase,Cytochrome P 450 Reductase,Ferrihemoprotein P 450 Reductase,NADPH Cytochrome P 450 Oxidoreductase,NADPH Cytochrome P 450 Reductase,NADPH Ferrihemoprotein Reductase,NADPH P450 Reductase,Oxidase, Cytochrome P-450,P-450 Oxidase, Cytochrome,P450 Reductase, Cytochrome,P450 Reductase, NADPH-Cytochrome,Reductase, Cytochrome P-450,Reductase, Cytochrome P450,Reductase, Ferrihemoprotein P-450,Reductase, Ferrihemoprotein P450,Reductase, NADPH-Cytochrome P450,Reductase, NADPH-Ferrihemoprotein,Reductase, NADPH-P450
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D002264 Carboxylic Acids Organic compounds containing the carboxy group (-COOH). This group of compounds includes amino acids and fatty acids. Carboxylic acids can be saturated, unsaturated, or aromatic. Carboxylic Acid,Acid, Carboxylic,Acids, Carboxylic
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D003903 Deuterium The stable isotope of hydrogen. It has one neutron and one proton in the nucleus. Deuterons,Hydrogen-2,Hydrogen 2
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids
D006899 Mixed Function Oxygenases Widely distributed enzymes that carry out oxidation-reduction reactions in which one atom of the oxygen molecule is incorporated into the organic substrate; the other oxygen atom is reduced and combined with hydrogen ions to form water. They are also known as monooxygenases or hydroxylases. These reactions require two substrates as reductants for each of the two oxygen atoms. There are different classes of monooxygenases depending on the type of hydrogen-providing cosubstrate (COENZYMES) required in the mixed-function oxidation. Hydroxylase,Hydroxylases,Mixed Function Oxidase,Mixed Function Oxygenase,Monooxygenase,Monooxygenases,Mixed Function Oxidases,Function Oxidase, Mixed,Function Oxygenase, Mixed,Oxidase, Mixed Function,Oxidases, Mixed Function,Oxygenase, Mixed Function,Oxygenases, Mixed Function

Related Publications

S C Davis, and Z Sui, and J A Peterson, and P R Ortiz de Montellano
December 1993, Biochemistry,
S C Davis, and Z Sui, and J A Peterson, and P R Ortiz de Montellano
September 1996, The Journal of biological chemistry,
S C Davis, and Z Sui, and J A Peterson, and P R Ortiz de Montellano
September 1994, Biochemical and biophysical research communications,
S C Davis, and Z Sui, and J A Peterson, and P R Ortiz de Montellano
March 1998, Biochemical and biophysical research communications,
S C Davis, and Z Sui, and J A Peterson, and P R Ortiz de Montellano
December 1969, The Biochemical journal,
S C Davis, and Z Sui, and J A Peterson, and P R Ortiz de Montellano
August 1997, Biochemical pharmacology,
S C Davis, and Z Sui, and J A Peterson, and P R Ortiz de Montellano
February 1967, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
S C Davis, and Z Sui, and J A Peterson, and P R Ortiz de Montellano
January 2007, Prostaglandins, leukotrienes, and essential fatty acids,
S C Davis, and Z Sui, and J A Peterson, and P R Ortiz de Montellano
January 1991, World review of nutrition and dietetics,
S C Davis, and Z Sui, and J A Peterson, and P R Ortiz de Montellano
March 2009, Revue de l'infirmiere,
Copied contents to your clipboard!