Molecular mechanisms of anti-inflammatory action of glucocorticoids. 1996

A C Cato, and E Wade
Forschungszentrum Karlsruhe, Institute of Genetics, Germany.

Glucocorticoid hormones are effective in controlling inflammation, but the mechanisms that confer this action are largely unknown. Recent advances in this field have shown that both positive and negative regulation of gene expression are necessary for this process. The genes whose activity are modulated in the anti-inflammatory process code for several cytokines, adhesion molecules and enzymes. Most of them do not carry a classical binding site for regulation by a glucocorticoid receptor, but have instead regulatory sequences for transcription factors such as AP-1 or NF-kappa B. This makes them unusual targets for glucocorticoid action and emphasizes the need for novel regulatory mechanisms. Recent studies describe an important contribution by protein-protein interactions, in which several domains of the receptor participate; these studies provide a better understanding of the action of the receptor and offer opportunities for the design of steroidal compounds that could function more effectively as anti-inflammatory drugs.

UI MeSH Term Description Entries
D007249 Inflammation A pathological process characterized by injury or destruction of tissues caused by a variety of cytologic and chemical reactions. It is usually manifested by typical signs of pain, heat, redness, swelling, and loss of function. Innate Inflammatory Response,Inflammations,Inflammatory Response, Innate,Innate Inflammatory Responses
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D011965 Receptors, Glucocorticoid Cytoplasmic proteins that specifically bind glucocorticoids and mediate their cellular effects. The glucocorticoid receptor-glucocorticoid complex acts in the nucleus to induce transcription of DNA. Glucocorticoids were named for their actions on blood glucose concentration, but they have equally important effects on protein and fat metabolism. Cortisol is the most important example. Corticoid Type II Receptor,Glucocorticoid Receptors,Glucocorticoids Receptor,Corticoid II Receptor,Corticoid Type II Receptors,Glucocorticoid Receptor,Receptors, Corticoid II,Receptors, Corticoid Type II,Receptors, Glucocorticoids,Corticoid II Receptors,Glucocorticoids Receptors,Receptor, Corticoid II,Receptor, Glucocorticoid,Receptor, Glucocorticoids
D004798 Enzymes Biological molecules that possess catalytic activity. They may occur naturally or be synthetically created. Enzymes are usually proteins, however CATALYTIC RNA and CATALYTIC DNA molecules have also been identified. Biocatalyst,Enzyme,Biocatalysts
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D005938 Glucocorticoids A group of CORTICOSTEROIDS that affect carbohydrate metabolism (GLUCONEOGENESIS, liver glycogen deposition, elevation of BLOOD SUGAR), inhibit ADRENOCORTICOTROPIC HORMONE secretion, and possess pronounced anti-inflammatory activity. They also play a role in fat and protein metabolism, maintenance of arterial blood pressure, alteration of the connective tissue response to injury, reduction in the number of circulating lymphocytes, and functioning of the central nervous system. Glucocorticoid,Glucocorticoid Effect,Glucorticoid Effects,Effect, Glucocorticoid,Effects, Glucorticoid
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000893 Anti-Inflammatory Agents Substances that reduce or suppress INFLAMMATION. Anti-Inflammatory Agent,Antiinflammatory Agent,Agents, Anti-Inflammatory,Agents, Antiinflammatory,Anti-Inflammatories,Antiinflammatories,Antiinflammatory Agents,Agent, Anti-Inflammatory,Agent, Antiinflammatory,Agents, Anti Inflammatory,Anti Inflammatories,Anti Inflammatory Agent,Anti Inflammatory Agents
D014157 Transcription Factors Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process. Transcription Factor,Factor, Transcription,Factors, Transcription

Related Publications

A C Cato, and E Wade
June 1998, Clinical science (London, England : 1979),
A C Cato, and E Wade
January 1985, Vutreshni bolesti,
A C Cato, and E Wade
January 1998, Mediators of inflammation,
A C Cato, and E Wade
November 1995, Biochemical Society transactions,
A C Cato, and E Wade
August 1996, American journal of respiratory and critical care medicine,
A C Cato, and E Wade
June 2018, Sheng li xue bao : [Acta physiologica Sinica],
A C Cato, and E Wade
January 2008, Nihon rinsho. Japanese journal of clinical medicine,
A C Cato, and E Wade
August 2005, Current drug targets. Inflammation and allergy,
A C Cato, and E Wade
June 1991, BioFactors (Oxford, England),
A C Cato, and E Wade
February 1996, Der Hautarzt; Zeitschrift fur Dermatologie, Venerologie, und verwandte Gebiete,
Copied contents to your clipboard!