Water-soluble, recombinant CuA-domain of the cytochrome ba3 subunit II from Thermus thermophilus. 1996

C E Slutter, and D Sanders, and P Wittung, and B G Malmström, and R Aasa, and J H Richards, and H B Gray, and J A Fee
Division of Chemistry and Chemical Engineering, California Institute ofTechnology, Pasadena, 91125, USA.

Recently, the genes of cytochrome ba3 from thermus thermophilus [Keightley, J.A., et al. (1995) J. Biol. Chem. 270, 20345-20358], a homolog of the heme-copper oxidase family, have been cloned. We report here expression of a truncated gene, encoding the copper A (CuA) domain of cytochrome ba3, that is regulated by a T7 RNA polymerase promoter in Escherichia coli. The CuA-containing domain is purified in high yields as a water-soluble, thermostable, purple-colored protein. Copper analysis by chemical assay, mass spectrometry, X-ray fluorescence, and EPR spin quantification show that this protein contains two copper ions bound in a mixed-valence state, indicating that the CuA site in cytochrome ba3, is a binuclear center. The absorption spectrum of the CuA site, free of the heme interference in cytochrome ba3, is similar to the spectra of other soluble fragments from the aa3-type oxidase of Parachccus denitrificans [Lappalainen, P., et al. (1993) J. Biol Chem. 268, 26416-26421] and the caa3-type oxidase of Bacillus subtilis [von Wachenfeldt, C. et al. (1994) FEBS Lett. 340, 109-113]. There are intense bands at 480 nm (3100 M(-1) cm(-1)) and 530 nm (3200 M(-1) cm(-1)), a band in the near -IR centered at 790 nm (1900 M(-1) cn(-1)), and a weaker band at 363 nm (1300M(-1) cm(-1)). The visible CD spectrum shows a positive-going band at 460 nm and a negative-going band at 527 nm, the opposite signs of which may result from the binuclear nature of the site. The secondary structure prediction from the far-UV CD spectrum indicates that this domain is predominantly beta-sheet, in agreement with the recent X-ray structure reported for the complete P. denitrificans cytochrome aa3 molecule [Iwata, S., et al. (1995) Nature 376, 660-669] and the engineered, purple CyoA protein [Wilmanns, M., et al. (1996) Proc. Natl Acad. Sci. U.S.A. 92, 11955-11959]. However, the thermostability of the fragment described here (Tm approximately 80 degrees C) and the stable binding of copper over a broad pH range (pH 3-9) suggest this protein may be uniquely suitable for detailed physical-chemical study.

UI MeSH Term Description Entries
D008667 Metalloproteins Proteins that have one or more tightly bound metal ions forming part of their structure. (Dorland, 28th ed) Metalloprotein
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D003300 Copper A heavy metal trace element with the atomic symbol Cu, atomic number 29, and atomic weight 63.55. Copper-63,Copper 63
D003573 Cytochrome b Group Cytochromes (electron-transporting proteins) with protoheme (HEME B) as the prosthetic group. Cytochromes Type b,Cytochromes, Heme b,Group, Cytochrome b,Heme b Cytochromes,Type b, Cytochromes,b Cytochromes, Heme,b Group, Cytochrome
D003576 Electron Transport Complex IV A multisubunit enzyme complex containing CYTOCHROME A GROUP; CYTOCHROME A3; two copper atoms; and 13 different protein subunits. It is the terminal oxidase complex of the RESPIRATORY CHAIN and collects electrons that are transferred from the reduced CYTOCHROME C GROUP and donates them to molecular OXYGEN, which is then reduced to water. The redox reaction is simultaneously coupled to the transport of PROTONS across the inner mitochondrial membrane. Cytochrome Oxidase,Cytochrome aa3,Cytochrome-c Oxidase,Cytochrome Oxidase Subunit III,Cytochrome a,a3,Cytochrome c Oxidase Subunit VIa,Cytochrome-c Oxidase (Complex IV),Cytochrome-c Oxidase Subunit III,Cytochrome-c Oxidase Subunit IV,Ferrocytochrome c Oxygen Oxidoreductase,Heme aa3 Cytochrome Oxidase,Pre-CTOX p25,Signal Peptide p25-Subunit IV Cytochrome Oxidase,Subunit III, Cytochrome Oxidase,p25 Presequence Peptide-Cytochrome Oxidase,Cytochrome c Oxidase,Cytochrome c Oxidase Subunit III,Cytochrome c Oxidase Subunit IV,Oxidase, Cytochrome,Oxidase, Cytochrome-c,Signal Peptide p25 Subunit IV Cytochrome Oxidase,p25 Presequence Peptide Cytochrome Oxidase
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining

Related Publications

C E Slutter, and D Sanders, and P Wittung, and B G Malmström, and R Aasa, and J H Richards, and H B Gray, and J A Fee
November 1996, Biophysical journal,
C E Slutter, and D Sanders, and P Wittung, and B G Malmström, and R Aasa, and J H Richards, and H B Gray, and J A Fee
June 1999, Nature structural biology,
C E Slutter, and D Sanders, and P Wittung, and B G Malmström, and R Aasa, and J H Richards, and H B Gray, and J A Fee
June 2006, FEBS letters,
C E Slutter, and D Sanders, and P Wittung, and B G Malmström, and R Aasa, and J H Richards, and H B Gray, and J A Fee
November 2000, Protein science : a publication of the Protein Society,
C E Slutter, and D Sanders, and P Wittung, and B G Malmström, and R Aasa, and J H Richards, and H B Gray, and J A Fee
June 1999, Biochemistry,
C E Slutter, and D Sanders, and P Wittung, and B G Malmström, and R Aasa, and J H Richards, and H B Gray, and J A Fee
September 2003, The Journal of biological chemistry,
C E Slutter, and D Sanders, and P Wittung, and B G Malmström, and R Aasa, and J H Richards, and H B Gray, and J A Fee
May 2006, The Journal of biological chemistry,
C E Slutter, and D Sanders, and P Wittung, and B G Malmström, and R Aasa, and J H Richards, and H B Gray, and J A Fee
March 2004, Journal of biomolecular NMR,
C E Slutter, and D Sanders, and P Wittung, and B G Malmström, and R Aasa, and J H Richards, and H B Gray, and J A Fee
December 2010, Proceedings of the National Academy of Sciences of the United States of America,
C E Slutter, and D Sanders, and P Wittung, and B G Malmström, and R Aasa, and J H Richards, and H B Gray, and J A Fee
March 2005, Acta crystallographica. Section D, Biological crystallography,
Copied contents to your clipboard!