A tRNA identity switch mediated by the binding interaction between a tRNA anticodon and the accessory domain of a class II aminoacyl-tRNA synthetase. 1996

W Yan, and J Augustine, and C Francklyn
Department of Biochemistry, University of Vermont College of Medicine, Burlington 05405, USA.

Identity elements in tRNAs and the intracellular balance of tRNAs allow accurate selection of tRNAs by aminoacyl-tRNA synthetases. The histidyl-tRNA from Escherichia coli is distinguished by a unique G-1.C73 base pair that upon exchange with other nucleotides leads to a marked decrease in the rate of aminoacylation in vitro. G-1.C73 is also a major identity element for histidine acceptance, such that the substitution of C73 brings about mischarging by glycyl-, glutaminyl-, and leucyl-tRNA synthetases. These identity conversions mediated by the G-1.C73 base pair were exploited to isolate secondary site revertants in the histidyl-tRNA synthetase from E. coli which restore histidine identity to a histidyl-tRNA suppressor carrying U73. The revertant substitutions confer a 3-4 fold reduction in the Michaelis constant for tRNAs carrying the amber-suppressing anticodon and map to the C-terminal domain of HisRS and its interface with the catalytic core. These findings demonstrate that the histidine tRNA anticodon plays a significant role in tRNA selection in vivo and that the C-terminal domain of HisRS is in large part responsible for recognizing this trinucleotide. The kinetic parameters determined also show a small degree of anticooperativity (delta delta G = -1.24 kcal/mol) between recognition of the discriminator base and the anticodon, suggesting that the two helical domains of the tRNA are not recognized independently. We propose that these effects substantially account for the ability of small changes in tRNA binding far removed from the site of a major determinant to bring about a complete conversion of tRNA identity.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009838 Oligodeoxyribonucleotides A group of deoxyribonucleotides (up to 12) in which the phosphate residues of each deoxyribonucleotide act as bridges in forming diester linkages between the deoxyribose moieties. Oligodeoxynucleotide,Oligodeoxyribonucleotide,Oligodeoxynucleotides
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006643 Histidine-tRNA Ligase An enzyme that activates histidine with its specific transfer RNA. EC 6.1.1.21. Histidyl T RNA Synthetase,His-tRNA Ligase,Histidyl-tRNA Synthetase,Jo-1 Antigen,Antigen, Jo-1,His tRNA Ligase,Histidine tRNA Ligase,Histidyl tRNA Synthetase,Jo 1 Antigen,Ligase, His-tRNA,Ligase, Histidine-tRNA,Synthetase, Histidyl-tRNA
D000926 Anticodon The sequential set of three nucleotides in TRANSFER RNA that interacts with its complement in MESSENGER RNA, the CODON, during translation in the ribosome. Anticodons

Related Publications

W Yan, and J Augustine, and C Francklyn
October 1999, Biochemistry,
W Yan, and J Augustine, and C Francklyn
January 1989, Molekuliarnaia biologiia,
W Yan, and J Augustine, and C Francklyn
August 2000, Proceedings of the National Academy of Sciences of the United States of America,
W Yan, and J Augustine, and C Francklyn
October 2012, Biomolecular NMR assignments,
W Yan, and J Augustine, and C Francklyn
October 1971, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
W Yan, and J Augustine, and C Francklyn
March 1993, Nature,
Copied contents to your clipboard!