Substrate binding and catalysis by ubiquitin C-terminal hydrolases: identification of two active site residues. 1996

C N Larsen, and J S Price, and K D Wilkinson
Department of Biochemistry, Emory University, Atlanta, Georgia 30322, USA.

Ubiquitin C-terminal hydrolases (UCH's) are a newly-defined class of thiol proteases implicated in the proteolytic processing of polymeric ubiquitin. They are important for the generation of monomeric ubiquitin, the active component of the eukaryotic ubiquitin-dependent proteolytic system. There are at least three mammalian isozymes which are tissue specific and developmentally regulated. To study the structure and functional roles of these highly homologous enzymes, we have subcloned and overexpressed two of these isozymes, UCH-L1 and UCH-L3. Here, we report their purification, physical characteristics, and the mutagenesis of UCH-L1. Site-directed mutagenesis of UCH-L1 reveals that C90 and H161 are involved in catalytic rate enhancement. Data from circular dichroic and Raman spectroscopy, as well as secondary structure prediction algorithms, indicate that both isozymes have a significant amount of alpha-helix (> 35%), and contain no disulfide bonds. Both enzymes are reasonably stable, undergoing a reversible thermal denaturation at 52 degrees C. These transitions are characterized by thermodynamic parameters typical of single domain globular proteins. Substrate binding affinity to UCH-L3 was directly measured by equilibrium gel filtration (Kd = 0.5 microM), and the results are similar to the kinetically determined Km for ubiquitin ethyl ester (o.6 microM). The binding is primarily electrostatic in nature and indicates the existence of a specific and extensive binding site for ubiquitin on the surface of the enzyme.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002384 Catalysis The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction. Catalyses
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D003545 Cysteine A thiol-containing non-essential amino acid that is oxidized to form CYSTINE. Cysteine Hydrochloride,Half-Cystine,L-Cysteine,Zinc Cysteinate,Half Cystine,L Cysteine
D004330 Drosophila A genus of small, two-winged flies containing approximately 900 described species. These organisms are the most extensively studied of all genera from the standpoint of genetics and cytology. Fruit Fly, Drosophila,Drosophila Fruit Flies,Drosophila Fruit Fly,Drosophilas,Flies, Drosophila Fruit,Fly, Drosophila Fruit,Fruit Flies, Drosophila
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

C N Larsen, and J S Price, and K D Wilkinson
March 1998, Biochemistry,
C N Larsen, and J S Price, and K D Wilkinson
March 2012, The FEBS journal,
C N Larsen, and J S Price, and K D Wilkinson
March 1996, The Journal of biological chemistry,
C N Larsen, and J S Price, and K D Wilkinson
October 1982, Plant physiology,
C N Larsen, and J S Price, and K D Wilkinson
January 2002, Biochemical and biophysical research communications,
C N Larsen, and J S Price, and K D Wilkinson
January 1996, Advances in experimental medicine and biology,
C N Larsen, and J S Price, and K D Wilkinson
June 2002, European journal of biochemistry,
C N Larsen, and J S Price, and K D Wilkinson
December 2004, Glycobiology,
Copied contents to your clipboard!