Role of interleukin-15 in the development of human CD56+ natural killer cells from CD34+ hematopoietic progenitor cells. 1996

E Mrózek, and P Anderson, and M A Caligiuri
Department of Hematologic Oncology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.

Human natural killer (NK) cells are bone marrow (BM)-derived CD2+CD16+CD56+ large granular lymphocytes (LGL) that lack CD3 yet contain the T-cell receptor zeta-chain (zeta-TCR). NK cells provide requisite interferon-gamma (IFN-gamma) during the early stages of infection in several experimental animal models. A number of studies have shown that human CD3-CD56+ NK cells can be obtained from BM-derived CD34+ hematopoietic progenitor cells (HPCs) cultured in the presence of interleukin-2 (IL-2) and an allogeneic feeder cell layer, or IL-2 and other hematopoietic growth factors such as the c-kit ligand (KL). The failure to detect the IL-2 gene product within the BM stroma and the presence of NK cells in IL-2-deficient mice suggested that cytokines other than IL-2 may participate in NK cell differentiation from HPCs in vivo. IL-15 is a cytokine which, while lacking any sequence homology in IL-2, can activate cells via the IL-2 receptor. Here we show that human BM stromal cells express the IL-15 transcript, and supernatants from long-term BM stromal cell cultures contain IL-15 protein. In vitro, CD3-CD56+ NK cells can be obtained from 21-day cultures of CD34+ HPCs supplemented with IL-15 in the absence of IL-2, stromal cells, or other cytokines. The addition of the KL to these cultures had no effect on the differentiation of the CD3-CD56+ cytotoxic effector cells, but greatly enhanced their expansion. The majority of these cells lack CD2 and CD16, but do express zeta-TCR. Similar to NK cells found in peripheral blood, the CD2-CD16-CD56+ NK cells grown in the presence of IL-15 were found to be potent producers of IFN-gamma in response to monocyte-derived cytokines. Thus IL-15, like KL, appears to be produced by BM stromal cells. IL-15 can induce CD34+ HPCs to differentiate into CD3-CD56+ NK cells, and KL can amplify this. Therefore, IL-15 may be a physiologically relevant ligand for NK cell differentiation in vivo.

UI MeSH Term Description Entries
D007378 Interleukins Soluble factors which stimulate growth-related activities of leukocytes as well as other cell types. They enhance cell proliferation and differentiation, DNA synthesis, secretion of other biologically active molecules and responses to immune and inflammatory stimuli. Interleukin
D007694 Killer Cells, Natural Bone marrow-derived lymphocytes that possess cytotoxic properties, classically directed against transformed and virus-infected cells. Unlike T CELLS; and B CELLS; NK CELLS are not antigen specific. The cytotoxicity of natural killer cells is determined by the collective signaling of an array of inhibitory and stimulatory CELL SURFACE RECEPTORS. A subset of T-LYMPHOCYTES referred to as NATURAL KILLER T CELLS shares some of the properties of this cell type. NK Cells,Natural Killer Cells,Cell, NK,Cell, Natural Killer,Cells, NK,Cells, Natural Killer,Killer Cell, Natural,NK Cell,Natural Killer Cell
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D001853 Bone Marrow The soft tissue filling the cavities of bones. Bone marrow exists in two types, yellow and red. Yellow marrow is found in the large cavities of large bones and consists mostly of fat cells and a few primitive blood cells. Red marrow is a hematopoietic tissue and is the site of production of erythrocytes and granular leukocytes. Bone marrow is made up of a framework of connective tissue containing branching fibers with the frame being filled with marrow cells. Marrow,Red Marrow,Yellow Marrow,Marrow, Bone,Marrow, Red,Marrow, Yellow
D001854 Bone Marrow Cells Cells contained in the bone marrow including fat cells (see ADIPOCYTES); STROMAL CELLS; MEGAKARYOCYTES; and the immediate precursors of most blood cells. Bone Marrow Cell,Cell, Bone Marrow,Cells, Bone Marrow,Marrow Cell, Bone,Marrow Cells, Bone
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D006412 Hematopoietic Stem Cells Progenitor cells from which all blood cells derived. They are found primarily in the bone marrow and also in small numbers in the peripheral blood. Colony-Forming Units, Hematopoietic,Progenitor Cells, Hematopoietic,Stem Cells, Hematopoietic,Hematopoietic Progenitor Cells,Cell, Hematopoietic Progenitor,Cell, Hematopoietic Stem,Cells, Hematopoietic Progenitor,Cells, Hematopoietic Stem,Colony Forming Units, Hematopoietic,Colony-Forming Unit, Hematopoietic,Hematopoietic Colony-Forming Unit,Hematopoietic Colony-Forming Units,Hematopoietic Progenitor Cell,Hematopoietic Stem Cell,Progenitor Cell, Hematopoietic,Stem Cell, Hematopoietic,Unit, Hematopoietic Colony-Forming,Units, Hematopoietic Colony-Forming
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

E Mrózek, and P Anderson, and M A Caligiuri
January 2016, Experimental hematology,
E Mrózek, and P Anderson, and M A Caligiuri
June 2011, Cell communication & adhesion,
E Mrózek, and P Anderson, and M A Caligiuri
February 1996, Journal of hematotherapy,
E Mrózek, and P Anderson, and M A Caligiuri
January 2005, Advances in immunology,
E Mrózek, and P Anderson, and M A Caligiuri
August 2007, Molecules and cells,
E Mrózek, and P Anderson, and M A Caligiuri
April 2008, Stem cells (Dayton, Ohio),
E Mrózek, and P Anderson, and M A Caligiuri
June 1995, Annals of hematology,
Copied contents to your clipboard!