Fas-mediated apoptosis in cultured human eosinophils. 1996

A Druilhe, and Z Cai, and S Hailé, and S Chouaib, and M Pretolani
Unité de Pharmacologie Cellulaire, Unité Associée Institut Pasteur, Paris, France.

Previous studies have shown that cytokine-dependent eosinophils undergo apoptosis, yet the mechanisms governing this phenomenon remain obscure. Fas antigen is a transmembrane glycoprotein belonging to the tumor necrosis factor receptor family. Cross-linking of Fas antigen in numerous cell types leads to apoptosis. In the present study, we examined the potential role of Fas antigen in the apoptosis of purified blood eosinophils from healthy donors. Cytokine-deprived eosinophils exhibited a time-dependent loss in viability, accompanied by an increase in the number of apoptotic nuclei and in the expression of Fas antigen and its mRNA, as shown by flow cytometry and reverse transcriptase-polymerase chain reaction, respectively. Cross-linking of Fas antigen with an agonistic anti-Fas monoclonal antibody (MoAb) induced a dose- and time-dependent increase in the number of apoptotic nuclei. Furthermore, using an in vitro coculture system, we showed engulfment of anti-Fas MoAb-treated eosinophils by monocyte-derived macrophages. Finally, incubation of eosinophils with the corticosteroid, dexamethasone, induced apoptosis and augmented that triggered by anti-Fas MoAb. Together, these observations suggest that Fas antigen expression and activation is involved in the apoptosis of human eosinophils and may contribute to the resolution of inflammatory allergic reactions in which eosinophil accumulation is a prominent feature.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D004804 Eosinophils Granular leukocytes with a nucleus that usually has two lobes connected by a slender thread of chromatin, and cytoplasm containing coarse, round granules that are uniform in size and stainable by eosin. Eosinophil
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis
D019014 fas Receptor A tumor necrosis factor receptor subtype found in a variety of tissues and on activated LYMPHOCYTES. It has specificity for FAS LIGAND and plays a role in regulation of peripheral immune responses and APOPTOSIS. Multiple isoforms of the protein exist due to multiple ALTERNATIVE SPLICING. The activated receptor signals via a conserved death domain that associates with specific TNF RECEPTOR-ASSOCIATED FACTORS in the CYTOPLASM. Mutations in the CD95 gene are associated with cases of autoimmune lymphoproliferative syndrome. APO-1 Antigen,Antigens, CD95,CD95 Antigens,Receptors, fas,Tumor Necrosis Factor Receptor Superfamily, Member 6,fas Antigens,fas Receptors,CD95 Antigen,Fas Cell Surface Death Receptor,TNFRSF6 Receptor,fas Antigen,APO 1 Antigen,Receptor, TNFRSF6,Receptor, fas

Related Publications

A Druilhe, and Z Cai, and S Hailé, and S Chouaib, and M Pretolani
May 2013, Journal of immunology (Baltimore, Md. : 1950),
A Druilhe, and Z Cai, and S Hailé, and S Chouaib, and M Pretolani
December 1994, Experimental cell research,
A Druilhe, and Z Cai, and S Hailé, and S Chouaib, and M Pretolani
November 2001, The American journal of tropical medicine and hygiene,
A Druilhe, and Z Cai, and S Hailé, and S Chouaib, and M Pretolani
January 1996, Advances in experimental medicine and biology,
A Druilhe, and Z Cai, and S Hailé, and S Chouaib, and M Pretolani
August 1995, Blood,
A Druilhe, and Z Cai, and S Hailé, and S Chouaib, and M Pretolani
July 1998, Blood,
A Druilhe, and Z Cai, and S Hailé, and S Chouaib, and M Pretolani
December 2010, Thorax,
A Druilhe, and Z Cai, and S Hailé, and S Chouaib, and M Pretolani
January 2000, Scandinavian journal of immunology,
A Druilhe, and Z Cai, and S Hailé, and S Chouaib, and M Pretolani
August 2002, The European respiratory journal,
A Druilhe, and Z Cai, and S Hailé, and S Chouaib, and M Pretolani
September 1995, Oncogene,
Copied contents to your clipboard!