Fenofibrate reduces plasma cholesteryl ester transfer from HDL to VLDL and normalizes the atherogenic, dense LDL profile in combined hyperlipidemia. 1996

M Guérin, and E Bruckert, and P J Dolphin, and G Turpin, and M J Chapman
Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 321, Pavillon Benjamin Delessert, Hôpital de la Pitié, Paris, France.

The effect of fenofibrate on plasma cholesteryl ester transfer protein (CETP) activity in relation to the quantitative and qualitative features of apoB- and apoA-I-containing lipoprotein subspecies was investigated in nine patients presenting with combined hyperlipidemia. Fenofibrate (200 mg/d for 8 weeks) induced significant reductions in plasma cholesterol (-16%; P < .01), triglyceride (-44%; P < .007), VLDL cholesterol (-52%; P = .01), LDL cholesterol (-14%; P < .001), and apoB (-15%; P < .009) levels and increased HDL cholesterol (19%; P = .0001) and apoA-I (12%; P = .003) levels. An exogenous cholesteryl ester transfer (CET) assay revealed a marked decrease (-26%; P < .002) in total plasma CETP-dependent CET activity after fenofibrate treatment. Concomitant with the pronounced reduction in VLDL levels (37%; P < .005), the rate of CET from HDL to VLDL was significantly reduced by 38% (P = .0001), whereas no modification in the rate of cholesteryl ester exchange between HDL and LDL occurred after fenofibrate therapy. Combined hyperlipidemia is characterized by an asymmetrical LDL profile in which small, dense LDL subspecies (LDL-4 and LDL-5, d = 1.039 to 1.063 g/mL) predominate. Fenofibrate quantitatively normalized the atherogenic LDL profile by reducing levels of dense LDL subspecies (-21%) and by inducing an elevation (26%; P < .05) in LDL subspecies of intermediate density (LDL-3, d = 1.029 to 1.039 g/mL), which possess optimal binding affinity for the cellular LDL receptor. However, no marked qualitative modifications in the chemical composition or size of LDL particles were observed after drug treatment. Interestingly, the HDL cholesterol concentration was increased by fenofibrate therapy, whereas no significant change was detected in total plasma HDL mass. In contrast, the HDL subspecies pattern was modified as the result of an increase in the total mass (11.7%) of HDL2a, HDL3a, and HDL3b (d = 1.091 to 1.156 g/mL) at the expense of reductions in the total mass (-23%) of HDL2b (d = 1.063 to 1.091 g/mL) and HDL3c (d = 1.156 to 1.179 g/mL). Such changes are consistent with a drug-induced reduction in CETP activity. In conclusion, the overall mechanism involved in the fenofibrate-induced modulation of the atherogenic dense LDL profile in combined hyperlipidemia primarily involves reduction in CET from HDL to VLDL together with normalization of the intravascular transformation of VLDL precursors to receptor-active LDLs of intermediate density.

UI MeSH Term Description Entries
D006950 Hyperlipidemia, Familial Combined A type of familial lipid metabolism disorder characterized by a variable pattern of elevated plasma CHOLESTEROL and/or TRIGLYCERIDES. Multiple genes on different chromosomes may be involved, such as the major late transcription factor (UPSTREAM STIMULATORY FACTORS) on CHROMOSOME 1. Hyperlipidemia, Multiple Lipoprotein-Type,Familial Combined Hyperlipidemia,Combined Hyperlipidemia, Familial,Combined Hyperlipidemias, Familial,Familial Combined Hyperlipidemias,Hyperlipidemia, Multiple Lipoprotein Type,Hyperlipidemias, Familial Combined,Hyperlipidemias, Multiple Lipoprotein-Type,Lipoprotein-Type Hyperlipidemia, Multiple,Lipoprotein-Type Hyperlipidemias, Multiple,Multiple Lipoprotein-Type Hyperlipidemia,Multiple Lipoprotein-Type Hyperlipidemias
D008076 Cholesterol, HDL Cholesterol which is contained in or bound to high-density lipoproteins (HDL), including CHOLESTEROL ESTERS and free cholesterol. High Density Lipoprotein Cholesterol,Cholesterol, HDL2,Cholesterol, HDL3,HDL Cholesterol,HDL(2) Cholesterol,HDL(3) Cholesterol,HDL2 Cholesterol,HDL3 Cholesterol,alpha-Lipoprotein Cholesterol,Cholesterol, alpha-Lipoprotein,alpha Lipoprotein Cholesterol
D008077 Lipoproteins, LDL A class of lipoproteins of small size (18-25 nm) and light (1.019-1.063 g/ml) particles with a core composed mainly of CHOLESTEROL ESTERS and smaller amounts of TRIGLYCERIDES. The surface monolayer consists mostly of PHOSPHOLIPIDS, a single copy of APOLIPOPROTEIN B-100, and free cholesterol molecules. The main LDL function is to transport cholesterol and cholesterol esters to extrahepatic tissues. Low-Density Lipoprotein,Low-Density Lipoproteins,beta-Lipoprotein,beta-Lipoproteins,LDL(1),LDL(2),LDL-1,LDL-2,LDL1,LDL2,Low-Density Lipoprotein 1,Low-Density Lipoprotein 2,LDL Lipoproteins,Lipoprotein, Low-Density,Lipoproteins, Low-Density,Low Density Lipoprotein,Low Density Lipoprotein 1,Low Density Lipoprotein 2,Low Density Lipoproteins,beta Lipoprotein,beta Lipoproteins
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D011345 Fenofibrate An antilipemic agent which reduces both CHOLESTEROL and TRIGLYCERIDES in the blood. Procetofen,Antara Micronized Procetofen,Apo-Feno-Micro,Apo-Fenofibrate,CiL,Controlip,Fenobeta,Fenofanton,Fenofibrat AL,Fenofibrat AZU,Fenofibrat AbZ,Fenofibrat FPh,Fenofibrat Heumann,Fenofibrat Hexal,Fenofibrat Stada,Fenofibrat-ratiopharm,Fénofibrate Debat,Fénofibrate MSD,Gen-Fenofibrate,LF-178,Lipanthyl,Lipantil,Liparison,Lipidil,Lipidil-Ter,Livesan,Lofibra,MTW-Fenofibrat,Normalip,Novo-Fenofibrate,Nu-Fenofibrate,PMS-Fenofibrate Micro,Phenofibrate,Procetofene,Secalip,Supralip,Tricor,durafenat,fenofibrat von ct,AZU, Fenofibrat,Apo Feno Micro,Apo Fenofibrate,Debat, Fénofibrate,Fenofibrat ratiopharm,Gen Fenofibrate,Heumann, Fenofibrat,Hexal, Fenofibrat,LF 178,LF178,Lipidil Ter,MTW Fenofibrat,Micronized Procetofen, Antara,Novo Fenofibrate,Nu Fenofibrate,PMS Fenofibrate Micro,Procetofen, Antara Micronized,Stada, Fenofibrat
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002788 Cholesterol Esters Fatty acid esters of cholesterol which constitute about two-thirds of the cholesterol in the plasma. The accumulation of cholesterol esters in the arterial intima is a characteristic feature of atherosclerosis. Cholesterol Ester,Cholesteryl Ester,Cholesteryl Esters,Ester, Cholesterol,Ester, Cholesteryl,Esters, Cholesterol,Esters, Cholesteryl
D005260 Female Females
D006023 Glycoproteins Conjugated protein-carbohydrate compounds including MUCINS; mucoid, and AMYLOID glycoproteins. C-Glycosylated Proteins,Glycosylated Protein,Glycosylated Proteins,N-Glycosylated Proteins,O-Glycosylated Proteins,Glycoprotein,Neoglycoproteins,Protein, Glycosylated,Proteins, C-Glycosylated,Proteins, Glycosylated,Proteins, N-Glycosylated,Proteins, O-Glycosylated

Related Publications

M Guérin, and E Bruckert, and P J Dolphin, and G Turpin, and M J Chapman
December 1999, Journal of lipid research,
M Guérin, and E Bruckert, and P J Dolphin, and G Turpin, and M J Chapman
February 2001, Clinica chimica acta; international journal of clinical chemistry,
M Guérin, and E Bruckert, and P J Dolphin, and G Turpin, and M J Chapman
January 2000, Arteriosclerosis, thrombosis, and vascular biology,
M Guérin, and E Bruckert, and P J Dolphin, and G Turpin, and M J Chapman
May 2004, Experimental and clinical endocrinology & diabetes : official journal, German Society of Endocrinology [and] German Diabetes Association,
M Guérin, and E Bruckert, and P J Dolphin, and G Turpin, and M J Chapman
August 2007, Journal of lipid research,
M Guérin, and E Bruckert, and P J Dolphin, and G Turpin, and M J Chapman
October 2002, Journal of lipid research,
M Guérin, and E Bruckert, and P J Dolphin, and G Turpin, and M J Chapman
February 2001, Arteriosclerosis, thrombosis, and vascular biology,
M Guérin, and E Bruckert, and P J Dolphin, and G Turpin, and M J Chapman
June 1993, Arteriosclerosis and thrombosis : a journal of vascular biology,
M Guérin, and E Bruckert, and P J Dolphin, and G Turpin, and M J Chapman
October 1995, Diabetes care,
M Guérin, and E Bruckert, and P J Dolphin, and G Turpin, and M J Chapman
September 1995, Journal of lipid research,
Copied contents to your clipboard!