Isolation and characterization of vascular smooth muscle inositol 1,4,5-trisphosphate receptor. 1996

M O Islam, and Y Yoshida, and T Koga, and M Kojima, and K Kangawa, and S Imai
Department of Pharmacology, Niigata University School of Medicine, Japan.

myo-Inositol 1,4,5-trisphosphate (InsP3) receptor of porcine aorta was purified to near homogeneity and its biochemical properties were compared with those of cerebellar InsP3 receptor of the same animal species. The aortic InsP3 receptor consisted of equal amounts of two polypeptides with slightly differing molecular masses of around 240 kDa and was found to possess a single population of InsP3-binding site (Kd of 1.2 nM). The InsP3 receptor purified from porcine cerebellum was also comprised of two polypeptides. However, the molecular mass was slightly but definitely larger, being 250 kDa, and the amounts of the two polypeptides were not equal. The aortic InsP3 receptor cross-reacted with polyclonal antibody specific to type 1 InsP3 receptor as did the cerebellar InsP3 receptor. The aortic InsP3 receptor bound to calmodulin-Sepharose in a Ca(2+)-dependent manner, while the cerebellar InsP3 receptor did not. Reverse transcriptase-PCR analysis revealed two splicing variants of the type 1 InsP3 receptor in porcine aortic smooth muscle distinct from those of the type 1 InsP3 receptor of porcine cerebellum. The possible relevance of this difference to difference in calmodulin-binding property was discussed.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D002147 Calmodulin A heat-stable, low-molecular-weight activator protein found mainly in the brain and heart. The binding of calcium ions to this protein allows this protein to bind to cyclic nucleotide phosphodiesterases and to adenyl cyclase with subsequent activation. Thereby this protein modulates cyclic AMP and cyclic GMP levels. Calcium-Dependent Activator Protein,Calcium-Dependent Regulator,Bovine Activator Protein,Cyclic AMP-Phosphodiesterase Activator,Phosphodiesterase Activating Factor,Phosphodiesterase Activator Protein,Phosphodiesterase Protein Activator,Regulator, Calcium-Dependent,AMP-Phosphodiesterase Activator, Cyclic,Activating Factor, Phosphodiesterase,Activator Protein, Bovine,Activator Protein, Calcium-Dependent,Activator Protein, Phosphodiesterase,Activator, Cyclic AMP-Phosphodiesterase,Activator, Phosphodiesterase Protein,Calcium Dependent Activator Protein,Calcium Dependent Regulator,Cyclic AMP Phosphodiesterase Activator,Factor, Phosphodiesterase Activating,Protein Activator, Phosphodiesterase,Protein, Bovine Activator,Protein, Calcium-Dependent Activator,Protein, Phosphodiesterase Activator,Regulator, Calcium Dependent
D002531 Cerebellum The part of brain that lies behind the BRAIN STEM in the posterior base of skull (CRANIAL FOSSA, POSTERIOR). It is also known as the "little brain" with convolutions similar to those of CEREBRAL CORTEX, inner white matter, and deep cerebellar nuclei. Its function is to coordinate voluntary movements, maintain balance, and learn motor skills. Cerebella,Corpus Cerebelli,Parencephalon,Cerebellums,Parencephalons
D002846 Chromatography, Affinity A chromatographic technique that utilizes the ability of biological molecules, often ANTIBODIES, to bind to certain ligands specifically and reversibly. It is used in protein biochemistry. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Chromatography, Bioaffinity,Immunochromatography,Affinity Chromatography,Bioaffinity Chromatography
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001011 Aorta The main trunk of the systemic arteries. Aortas

Related Publications

M O Islam, and Y Yoshida, and T Koga, and M Kojima, and K Kangawa, and S Imai
March 1990, Proceedings of the National Academy of Sciences of the United States of America,
M O Islam, and Y Yoshida, and T Koga, and M Kojima, and K Kangawa, and S Imai
February 1992, Archives of biochemistry and biophysics,
M O Islam, and Y Yoshida, and T Koga, and M Kojima, and K Kangawa, and S Imai
June 2007, Arteriosclerosis, thrombosis, and vascular biology,
M O Islam, and Y Yoshida, and T Koga, and M Kojima, and K Kangawa, and S Imai
October 1992, The American journal of physiology,
M O Islam, and Y Yoshida, and T Koga, and M Kojima, and K Kangawa, and S Imai
March 1993, Trends in pharmacological sciences,
M O Islam, and Y Yoshida, and T Koga, and M Kojima, and K Kangawa, and S Imai
August 1993, British journal of pharmacology,
M O Islam, and Y Yoshida, and T Koga, and M Kojima, and K Kangawa, and S Imai
April 1988, The Biochemical journal,
M O Islam, and Y Yoshida, and T Koga, and M Kojima, and K Kangawa, and S Imai
March 1993, American journal of hypertension,
M O Islam, and Y Yoshida, and T Koga, and M Kojima, and K Kangawa, and S Imai
September 1995, The Journal of biological chemistry,
M O Islam, and Y Yoshida, and T Koga, and M Kojima, and K Kangawa, and S Imai
December 1989, British journal of pharmacology,
Copied contents to your clipboard!