Cys5 and Cys214 of NAD(P)H:flavin oxidoreductase from Escherichia coli are located in the active site. 1996

F Fieschi, and V Nivière, and M Fontecave
Laboratoire d'Etudes Dynamiques et Structurales de la Sélectivité, UMR C5616, CNRS, Université Joseph Fourier, Grenoble, France.

The NAD(P)H:flavin oxidoreductase (NADPH:riboflavin oxidoreductase) from Escherichia coli, Fre, is a monomer of 26.1 kDa, which catalyzes the reduction of free flavins by NADPH or NADH. A sequential ordered mechanism, with NADPH binding first, operates. Fre is the prototype of a class of flavin reductases able to transfer electrons with no prosthetic group. It has been previously reported that several members of this family, including Fre, were inactivated by thiol reagents such as N-ethylmaleimide (MalNEt). Amino acid sequence similarities among these enzymes reveal that one of the three cysteines residues of Fre is highly conserved. Altogether this suggested a crucial role of cysteine residues for catalysis. The three cysteine residues were mutated to serine residues. Single-mutant and double-mutant enzymes were as active as the wild-type and Km values for both substrates remained the same. Cysteine residues are thus not important for activity. Nevertheless, we showed that cysteines 5 and 214, but not cysteine 149, were responsible for MalNEt inactivation. In addition, it has been found that riboflavin, but not NADPH, can protect Fre from MalNEt inactivation. This strongly suggested that Cys5 and Cys214 are located at the flavin-binding site of Fre and that flavin can bind to the enzyme in the absence of NADPH.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009247 NADH, NADPH Oxidoreductases A group of oxidoreductases that act on NADH or NADPH. In general, enzymes using NADH or NADPH to reduce a substrate are classified according to the reverse reaction, in which NAD+ or NADP+ is formally regarded as an acceptor. This subclass includes only those enzymes in which some other redox carrier is the acceptor. (Enzyme Nomenclature, 1992, p100) EC 1.6. Oxidoreductases, NADH, NADPH,NADPH Oxidoreductases NADH,Oxidoreductases NADH, NADPH
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D003545 Cysteine A thiol-containing non-essential amino acid that is oxidized to form CYSTINE. Cysteine Hydrochloride,Half-Cystine,L-Cysteine,Zinc Cysteinate,Half Cystine,L Cysteine
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining

Related Publications

F Fieschi, and V Nivière, and M Fontecave
June 1999, Biochemistry,
F Fieschi, and V Nivière, and M Fontecave
March 1994, The Journal of biological chemistry,
F Fieschi, and V Nivière, and M Fontecave
February 1993, European journal of biochemistry,
F Fieschi, and V Nivière, and M Fontecave
October 2002, The Journal of biological chemistry,
F Fieschi, and V Nivière, and M Fontecave
March 1979, Archives of biochemistry and biophysics,
F Fieschi, and V Nivière, and M Fontecave
April 2002, Applied and environmental microbiology,
F Fieschi, and V Nivière, and M Fontecave
November 1977, The Journal of biological chemistry,
Copied contents to your clipboard!