PGF2alpha-induced signaling events in glomerular mesangial cells. 1996

B A Breshnahan, and D Kelefiotis, and I Stratidakis, and E A Lianos
Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.

Of the various arachidonate cyclooxygenation eicosanoids synthesized in the normal and injured renal glomerular capillary, prostaglandin F2alpha (PGF2alpha) is the most abundant and potent in eliciting signaling events and biologic responses including contraction and proliferation of glomerular capillary pericytes known as mesangial cells. The regulation of PGF2alpha-induced signaling in these cells is unknown. The present studies assessed two key signaling events in response to PGF2alpha in mesangial cells; activation of phospholipase C (PLC) and protein kinase C (PKC). Mechanisms regulating PLC activation were also explored. Incubation of cultured growth arrested rat mesangial cells with PGF2alpha (1 microM) resulted in activation of a phosphatidyl inositol-specific phospholipase C (PI-PLC) assessed as increased generation of polyphosphates in myo-[3H]-inositol-labeled cells and as increased diacylglycerol (DAG) mass levels measured by a radioenzymatic assay. Generation of both inositol 1,4,5-trisphosphate and inositol 1,3,4-trisphosphate occurred, the former constituting 70% of total inositol trisphosphates. Enhanced generation of inositol 1,4-bisphosphate (IP2) also occurred and was greater than that of inositol 1,4,5-trisphosphate (IP3), indicating that PI-PLC utilized the phosphatidyl inositol monophosphate (PIP) to a greater extent than the phosphatidyl inositol bisphosphate (PIP2) substrate. Generation of DAG in response to PGF2alpha occurred in a biphasic pattern characterized by an early transient rise that peaked concomitantly with IP3 at 15 sec, and a late sustained increase at 2, 5, and 15 min that was not associated with an increase in IP3. PGF2alpha also activated PKC assessed as translocation of enzyme activity from cytosolic to membrane fractions. Inhibition of PKC using H-7 enhanced PGF2alpha-induced generation of IP3 at 15 sec but attenuated generation of DAG at 15 min. A more selective PKC inhibitor, Calphostin C, dose-dependently increased basal IP3 generation and also attenuated generation of DAG in response to PGF2alpha. This indicates that PKC negatively modulates PGF2alpha-induced PI-PLC activation, and that the late sustained DAG generation in response to PGF2alpha is regulated by a PKC-dependent phospholipase other than PLC. The mechanisms of PI-PLC stimulation in response to PGF2alpha were further explored using inhibitors of protein tyrosine phosphorylation and of guanine nucleotide-binding (G) protein activation. Inhibition of protein tyrosine phosphorylation using genistein had no effect on IP3 or DAG generation. ADP ribosylation of Gi using pertussis toxin (PTx) had no effect on IP3 generation in response to PGF2alpha. The inhibitor of receptor-coupled PI-PLC activation aminosteroid compound U-73122 that blocks G(PLC) was also ineffective. The observations indicate that PGF2alpha stimulates a PI-PLC which is under negative feedback regulatory control by PKC, and a phospholipase other than PLC which is under positive regulatory control by PKC. PGF2alpha-induced PI-PLC activation is independent of protein tyrosine phosphorylation and of PTx-sensitive G proteins.

UI MeSH Term Description Entries
D007295 Inositol Phosphates Phosphoric acid esters of inositol. They include mono- and polyphosphoric acid esters, with the exception of inositol hexaphosphate which is PHYTIC ACID. Inositol Phosphate,Phosphate, Inositol,Phosphates, Inositol
D007529 Isoflavones 3-Phenylchromones. Isomeric form of FLAVONOIDS in which the benzene group is attached to the 3 position of the benzopyran ring instead of the 2 position. 3-Benzylchroman-4-One,3-Benzylidene-4-Chromanone,Homoisoflavone,Homoisoflavones,Isoflavone,Isoflavone Derivative,3-Benzylchroman-4-Ones,3-Benzylidene-4-Chromanones,Isoflavone Derivatives,3 Benzylchroman 4 One,3 Benzylchroman 4 Ones,3 Benzylidene 4 Chromanone,3 Benzylidene 4 Chromanones,Derivative, Isoflavone,Derivatives, Isoflavone
D007546 Isoquinolines A group of compounds with the heterocyclic ring structure of benzo(c)pyridine. The ring structure is characteristic of the group of opium alkaloids such as papaverine. (From Stedman, 25th ed)
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009281 Naphthalenes Two-ring crystalline hydrocarbons isolated from coal tar. They are used as intermediates in chemical synthesis, as insect repellents, fungicides, lubricants, preservatives, and, formerly, as topical antiseptics.
D010566 Virulence Factors, Bordetella A set of BACTERIAL ADHESINS and TOXINS, BIOLOGICAL produced by BORDETELLA organisms that determine the pathogenesis of BORDETELLA INFECTIONS, such as WHOOPING COUGH. They include filamentous hemagglutinin; FIMBRIAE PROTEINS; pertactin; PERTUSSIS TOXIN; ADENYLATE CYCLASE TOXIN; dermonecrotic toxin; tracheal cytotoxin; Bordetella LIPOPOLYSACCHARIDES; and tracheal colonization factor. Bordetella Virulence Factors,Agglutinogen 2, Bordetella Pertussis,Bordetella Virulence Determinant,LFP-Hemagglutinin,LP-HA,Leukocytosis-Promoting Factor Hemagglutinin,Lymphocytosis-Promoting Factor-Hemagglutinin,Pertussis Agglutinins,Agglutinins, Pertussis,Determinant, Bordetella Virulence,Factor Hemagglutinin, Leukocytosis-Promoting,Factor-Hemagglutinin, Lymphocytosis-Promoting,Factors, Bordetella Virulence,Hemagglutinin, Leukocytosis-Promoting Factor,LFP Hemagglutinin,LP HA,Leukocytosis Promoting Factor Hemagglutinin,Lymphocytosis Promoting Factor Hemagglutinin,Virulence Determinant, Bordetella
D010727 Phosphoric Diester Hydrolases A class of enzymes that catalyze the hydrolysis of one of the two ester bonds in a phosphodiester compound. EC 3.1.4. Phosphodiesterase,Phosphodiesterases,Hydrolases, Phosphoric Diester
D010879 Piperazines Compounds that are derived from PIPERAZINE.
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell

Related Publications

B A Breshnahan, and D Kelefiotis, and I Stratidakis, and E A Lianos
May 1995, Prostaglandins,
B A Breshnahan, and D Kelefiotis, and I Stratidakis, and E A Lianos
April 2002, Kidney international,
B A Breshnahan, and D Kelefiotis, and I Stratidakis, and E A Lianos
April 2008, American journal of physiology. Renal physiology,
B A Breshnahan, and D Kelefiotis, and I Stratidakis, and E A Lianos
January 1991, Experimental cell research,
B A Breshnahan, and D Kelefiotis, and I Stratidakis, and E A Lianos
May 1991, Seminars in nephrology,
B A Breshnahan, and D Kelefiotis, and I Stratidakis, and E A Lianos
September 1995, Kidney international. Supplement,
B A Breshnahan, and D Kelefiotis, and I Stratidakis, and E A Lianos
April 2004, Journal of cellular biochemistry,
B A Breshnahan, and D Kelefiotis, and I Stratidakis, and E A Lianos
September 2016, Pharmacological research,
B A Breshnahan, and D Kelefiotis, and I Stratidakis, and E A Lianos
August 2010, Canadian journal of physiology and pharmacology,
B A Breshnahan, and D Kelefiotis, and I Stratidakis, and E A Lianos
January 2008, Nihon Jinzo Gakkai shi,
Copied contents to your clipboard!