Role of endonuclease activity and DNA fragmentation in Ca2+ ionophore A23187-mediated injury to rabbit isolated gastric mucosal cells. 1996

B L Tepperman, and C W Lush, and B D Soper
Department of Physiology, University of Western Ontario, London, Canada.

In the current study, the role of endonuclease activity in calcium ionophore A23187-induced gastric mucosal cellular disruption was examined using rabbit gastric mucosal cells. Cell integrity was assessed using trypan blue dye exclusion and Alamar blue dye absorbance. Ionophore A23187 (1.6-25 microM) induced a concentration-dependent decrease in dye exclusion and cell metabolism in cells suspended in a medium containing Ca2+ (2 mM), while no such effect was observed in cells incubated in the absence of extracellular Ca2+. Cells that were pretreated with the endonuclease inhibitors aurintricarboxylic acid (ATCA; 0.2 or 0.5 mM or Zn2+; 0.01 and 0.1 mM) exhibited significant reduction in the total extent of cell injury when incubated with A23187 in the presence of Ca2+. DNA fragmentation as assessed by measurement of [3H]thymidine liberation or gel electrophoresis was increased in response to ionophore A23187 (12.5 or 25 microM) treatment. A minimal degree of fragmentation was observed when cells were suspended in a Ca(2+)-free medium or incubated in the presence of ATCA or Zn2+. Addition of ethanol (8% w/v) induced a significant increase in cell injury, which was not affected by either removal of extracellular Ca2+ or ATCA pretreatment. Furthermore, treatment with the antioxidants catalase (50 micrograms/ml) or 2',2'-dipyridyl (2 mM) reduced ionophore-induced cell injury but did not reduce the extent of DNA fragmentation. These data suggest that sustained increases in intracellular Ca2+ result in increased endonuclease activity in gastric mucosal cells, leading to extensive DNA lysis and cell damage. Ethanol-induced cell damage does not involve Ca2+ influx and therefore is not mediated by endonuclease activation. Furthermore, sustained increases in cellular Ca2+ may also mediate their effects via formation of reactive oxygen metabolites, but this mechanism of cell damage does not appear to involve DNA fragmentation.

UI MeSH Term Description Entries
D007476 Ionophores Chemical agents that increase the permeability of biological or artificial lipid membranes to specific ions. Most ionophores are relatively small organic molecules that act as mobile carriers within membranes or coalesce to form ion permeable channels across membranes. Many are antibiotics, and many act as uncoupling agents by short-circuiting the proton gradient across mitochondrial membranes. Ionophore
D010078 Oxazines Six-membered heterocycles containing an oxygen and a nitrogen.
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004396 Coloring Agents Chemicals and substances that impart color including soluble dyes and insoluble pigments. They are used in INKS; PAINTS; and as INDICATORS AND REAGENTS. Coloring Agent,Dye,Dyes,Organic Pigment,Stain,Stains,Tissue Stain,Tissue Stains,Organic Pigments,Pigments, Inorganic,Agent, Coloring,Inorganic Pigments,Pigment, Organic,Pigments, Organic,Stain, Tissue,Stains, Tissue
D004720 Endonucleases Enzymes that catalyze the hydrolysis of the internal bonds and thereby the formation of polynucleotides or oligonucleotides from ribo- or deoxyribonucleotide chains. EC 3.1.-. Endonuclease
D005753 Gastric Mucosa Lining of the STOMACH, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. The surface cells produce MUCUS that protects the stomach from attack by digestive acid and enzymes. When the epithelium invaginates into the LAMINA PROPRIA at various region of the stomach (CARDIA; GASTRIC FUNDUS; and PYLORUS), different tubular gastric glands are formed. These glands consist of cells that secrete mucus, enzymes, HYDROCHLORIC ACID, or hormones. Cardiac Glands,Gastric Glands,Pyloric Glands,Cardiac Gland,Gastric Gland,Gastric Mucosas,Gland, Cardiac,Gland, Gastric,Gland, Pyloric,Glands, Cardiac,Glands, Gastric,Glands, Pyloric,Mucosa, Gastric,Mucosas, Gastric,Pyloric Gland
D000001 Calcimycin An ionophorous, polyether antibiotic from Streptomyces chartreusensis. It binds and transports CALCIUM and other divalent cations across membranes and uncouples oxidative phosphorylation while inhibiting ATPase of rat liver mitochondria. The substance is used mostly as a biochemical tool to study the role of divalent cations in various biological systems. 4-Benzoxazolecarboxylic acid, 5-(methylamino)-2-((3,9,11-trimethyl-8-(1-methyl-2-oxo-2-(1H-pyrrol-2-yl)ethyl)-1,7-dioxaspiro(5.5)undec-2-yl)methyl)-, (6S-(6alpha(2S*,3S*),8beta(R*),9beta,11alpha))-,A-23187,A23187,Antibiotic A23187,A 23187,A23187, Antibiotic

Related Publications

B L Tepperman, and C W Lush, and B D Soper
March 1999, Digestive diseases and sciences,
B L Tepperman, and C W Lush, and B D Soper
September 1995, Digestive diseases and sciences,
B L Tepperman, and C W Lush, and B D Soper
December 1989, Biochemical pharmacology,
B L Tepperman, and C W Lush, and B D Soper
January 1994, Canadian journal of physiology and pharmacology,
B L Tepperman, and C W Lush, and B D Soper
January 1991, The International journal of biochemistry,
B L Tepperman, and C W Lush, and B D Soper
July 1994, The American journal of physiology,
B L Tepperman, and C W Lush, and B D Soper
September 1993, European journal of pharmacology,
B L Tepperman, and C W Lush, and B D Soper
July 1996, Gastroenterology,
B L Tepperman, and C W Lush, and B D Soper
January 1997, European journal of pharmacology,
B L Tepperman, and C W Lush, and B D Soper
January 1994, Digestive diseases and sciences,
Copied contents to your clipboard!