Protein inhibitor of mitochondrial ATP synthase: relationship of inhibitor structure to pH-dependent regulation. 1996

M S Lebowitz, and P L Pedersen
Laboratory for Molecular and Cellular Bioenergetics, Department of Biological Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA.

In the absence of an electrochemical proton gradient, the F1 moiety of the mitochondrial ATP synthase catalyzes the hydrolysis of ATP. This reaction is inhibited by a natural protein inhibitor, in a process characterized by an increase in ATPase inhibition as pH is decreased from 8.0 to 6.0. In order to gain greater insight into the molecular and chemical events underlying this regulatory process, the relationships among pH, helicity of the inhibitor protein, and its capacity to inhibit F1-ATPase activity were examined. First, peptides corresponding to four regions of the 82-amino-acid inhibitor protein were chemically synthesized and assessed for both retention of secondary structure, and capacity to inhibit F1-ATPase activity. These studies showed that a region of only 24-amino-acid residues, from Phe 22 through Len 45, accounts for the inhibitory capacity of the inhibitor protein, and that retention of native helical structure in this region is not essential for inhibition. Second, three mutants (33P34, 39P40, and 43P44) of the intact inhibitor protein were prepared in which a proline residue was inserted within the inhibitory region to disrupt native helical structure. The secondary structures and inhibitory capacities of these mutants were analyzed as a function of pH. These studies revealed that, despite the initial loss of helical structure within the inhibitory region due to proline insertion, a further loss of helical structure is required to modulate inhibitory activity. These results suggest that a loss of helical structure outside the inhibitory region correlates with an increase in inhibitory capacity. Finally, two separate mutants (H48A and H55A) were prepared in which a conserved histidine residue in the wild-type inhibitor protein was replaced with an alanine. The secondary structures and inhibitory capacities of these mutants were also investigated as a function of pH. Results indicated that, although histidine residues do not directly affect the inhibitory capacity of the protein, they are important for maintaining the inhibitor protein in an inactive form at high pH. Furthermore, these results show that loss in helical structure, although correlated with an increase in inhibitory capacity, is not essential for this function. These novel experiments are consistent with a model in which the inhibitor protein is envisioned as consisting of two regions, an inhibitory region and a regulatory region. It is suggested that reduction of pH allows for the protonation of a histidine residue blocking the interaction between the two regions, thus activating the inhibitory response. The pH reduction also correlates with a partial unfolding of the protein that may either cause or result from the loss of interaction between the two helices. This unfolding may be necessary for further optimization of inhibitor function.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009838 Oligodeoxyribonucleotides A group of deoxyribonucleotides (up to 12) in which the phosphate residues of each deoxyribonucleotide act as bridges in forming diester linkages between the deoxyribose moieties. Oligodeoxynucleotide,Oligodeoxyribonucleotide,Oligodeoxynucleotides
D011392 Proline A non-essential amino acid that is synthesized from GLUTAMIC ACID. It is an essential component of COLLAGEN and is important for proper functioning of joints and tendons. L-Proline,L Proline
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D006180 Proton-Translocating ATPases Multisubunit enzymes that reversibly synthesize ADENOSINE TRIPHOSPHATE. They are coupled to the transport of protons across a membrane. ATP Dependent Proton Translocase,ATPase, F0,ATPase, F1,Adenosinetriphosphatase F1,F(1)F(0)-ATPase,F1 ATPase,H(+)-Transporting ATP Synthase,H(+)-Transporting ATPase,H(+)ATPase Complex,Proton-Translocating ATPase,Proton-Translocating ATPase Complex,Proton-Translocating ATPase Complexes,ATPase, F(1)F(0),ATPase, F0F1,ATPase, H(+),Adenosine Triphosphatase Complex,F(0)F(1)-ATP Synthase,F-0-ATPase,F-1-ATPase,F0F1 ATPase,F1-ATPase,F1F0 ATPase Complex,H(+)-ATPase,H(+)-Transporting ATP Synthase, Acyl-Phosphate-Linked,H+ ATPase,H+ Transporting ATP Synthase,H+-Translocating ATPase,Proton-Translocating ATPase, F0 Sector,Proton-Translocating ATPase, F1 Sector,ATPase Complex, Proton-Translocating,ATPase Complexes, Proton-Translocating,ATPase, H+,ATPase, H+-Translocating,ATPase, Proton-Translocating,Complex, Adenosine Triphosphatase,Complexes, Proton-Translocating ATPase,F 0 ATPase,F 1 ATPase,F0 ATPase,H+ Translocating ATPase,Proton Translocating ATPase,Proton Translocating ATPase Complex,Proton Translocating ATPase Complexes,Proton Translocating ATPase, F0 Sector,Proton Translocating ATPase, F1 Sector,Triphosphatase Complex, Adenosine
D006639 Histidine An essential amino acid that is required for the production of HISTAMINE. Histidine, L-isomer,L-Histidine,Histidine, L isomer,L-isomer Histidine
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations

Related Publications

M S Lebowitz, and P L Pedersen
April 1994, Journal of bioenergetics and biomembranes,
M S Lebowitz, and P L Pedersen
January 2013, Trends in cardiovascular medicine,
M S Lebowitz, and P L Pedersen
January 2015, American journal of cardiovascular disease,
M S Lebowitz, and P L Pedersen
October 1986, Archives of biochemistry and biophysics,
M S Lebowitz, and P L Pedersen
January 1997, Methods in enzymology,
M S Lebowitz, and P L Pedersen
January 2005, Progress in nucleic acid research and molecular biology,
M S Lebowitz, and P L Pedersen
November 1994, Clinica chimica acta; international journal of clinical chemistry,
M S Lebowitz, and P L Pedersen
May 1998, Clinical science (London, England : 1979),
Copied contents to your clipboard!