Evolutionary histories of highly repeated DNA families among the Artiodactyla (Mammalia). 1996

W S Modi, and D S Gallagher, and J E Womack
Biological Carcinogenesis and Development Program, SAIC Frederick, National Cancer Institute-FCRDC, Frederick, MD 21702-1201 USA.

Six highly repeated DNA families were analyzed using Southern blotting and fluorescence in situ hybridization in a comparative study of 46 species of artiodactyls belonging to seven of the eight extant taxonomic families. Two of the repeats, the dispersed bovine-Pst family and the localized 1.715 component, were found to have the broadest taxonomic distributions, being present in all pecoran ruminants (Giraffidae, Cervidae, Antilocapridae, and Bovidae), indicating that these repeats may be 25-40 million years old. Different 1.715 restriction patterns were observed in different taxonomic families, indicating that independent concerted evolution events have homogenized different motifs in different lineages. The other four satellite arrays were restricted to the Bovini and sometimes to the related Boselaphini and Tragelaphini. Results reveal that among the two compound satellites studied, the two components of the 1.711a originated simultaneously, whereas the two components of the 1.711b originated at two different historical times, perhaps as many as 15 million years apart. Systematic conclusions support the monophyly of the infraorder Pecora, the monophyly of the subfamily Bovinae (containing the Boselaphini, Bovini, and Tragelaphini), an inability to resolve any interrelationships among the other tribes of bovids, paraphyly of the genus Bos with respect to Bison, and a lack of molecular variation among two morphologically and ecologically distinct subspecies of African buffaloes (Syncerus caffer cafer and S. c. nanus). Cytogenetically, a reduction in diploid chromosome numbers through centric fusion in derived karyotypes is accompanied by a loss of centromeric satellite DNA. The nilgai karyotype contains an apparent dicentric chromosome as evidenced by the sites of 1.715 hybridization. Telomeric sequences have been translocated to the centromeres without concomitant chromosomal rearrangement in Thompson's gazelle.

UI MeSH Term Description Entries
D007621 Karyotyping Mapping of the KARYOTYPE of a cell. Karyotype Analysis Methods,Analysis Method, Karyotype,Analysis Methods, Karyotype,Karyotype Analysis Method,Karyotypings,Method, Karyotype Analysis,Methods, Karyotype Analysis
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010802 Phylogeny The relationships of groups of organisms as reflected by their genetic makeup. Community Phylogenetics,Molecular Phylogenetics,Phylogenetic Analyses,Phylogenetic Analysis,Phylogenetic Clustering,Phylogenetic Comparative Analysis,Phylogenetic Comparative Methods,Phylogenetic Distance,Phylogenetic Generalized Least Squares,Phylogenetic Groups,Phylogenetic Incongruence,Phylogenetic Inference,Phylogenetic Networks,Phylogenetic Reconstruction,Phylogenetic Relatedness,Phylogenetic Relationships,Phylogenetic Signal,Phylogenetic Structure,Phylogenetic Tree,Phylogenetic Trees,Phylogenomics,Analyse, Phylogenetic,Analysis, Phylogenetic,Analysis, Phylogenetic Comparative,Clustering, Phylogenetic,Community Phylogenetic,Comparative Analysis, Phylogenetic,Comparative Method, Phylogenetic,Distance, Phylogenetic,Group, Phylogenetic,Incongruence, Phylogenetic,Inference, Phylogenetic,Method, Phylogenetic Comparative,Molecular Phylogenetic,Network, Phylogenetic,Phylogenetic Analyse,Phylogenetic Clusterings,Phylogenetic Comparative Analyses,Phylogenetic Comparative Method,Phylogenetic Distances,Phylogenetic Group,Phylogenetic Incongruences,Phylogenetic Inferences,Phylogenetic Network,Phylogenetic Reconstructions,Phylogenetic Relatednesses,Phylogenetic Relationship,Phylogenetic Signals,Phylogenetic Structures,Phylogenetic, Community,Phylogenetic, Molecular,Phylogenies,Phylogenomic,Reconstruction, Phylogenetic,Relatedness, Phylogenetic,Relationship, Phylogenetic,Signal, Phylogenetic,Structure, Phylogenetic,Tree, Phylogenetic
D012091 Repetitive Sequences, Nucleic Acid Sequences of DNA or RNA that occur in multiple copies. There are several types: INTERSPERSED REPETITIVE SEQUENCES are copies of transposable elements (DNA TRANSPOSABLE ELEMENTS or RETROELEMENTS) dispersed throughout the genome. TERMINAL REPEAT SEQUENCES flank both ends of another sequence, for example, the long terminal repeats (LTRs) on RETROVIRUSES. Variations may be direct repeats, those occurring in the same direction, or inverted repeats, those opposite to each other in direction. TANDEM REPEAT SEQUENCES are copies which lie adjacent to each other, direct or inverted (INVERTED REPEAT SEQUENCES). DNA Repetitious Region,Direct Repeat,Genes, Selfish,Nucleic Acid Repetitive Sequences,Repetitive Region,Selfish DNA,Selfish Genes,DNA, Selfish,Repetitious Region, DNA,Repetitive Sequence,DNA Repetitious Regions,DNAs, Selfish,Direct Repeats,Gene, Selfish,Repeat, Direct,Repeats, Direct,Repetitious Regions, DNA,Repetitive Regions,Repetitive Sequences,Selfish DNAs,Selfish Gene
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004276 DNA, Satellite Highly repetitive DNA sequences found in HETEROCHROMATIN, mainly near centromeres. They are composed of simple sequences (very short) (see MINISATELLITE REPEATS) repeated in tandem many times to form large blocks of sequence. Additionally, following the accumulation of mutations, these blocks of repeats have been repeated in tandem themselves. The degree of repetition is on the order of 1000 to 10 million at each locus. Loci are few, usually one or two per chromosome. They were called satellites since in density gradients, they often sediment as distinct, satellite bands separate from the bulk of genomic DNA owing to a distinct BASE COMPOSITION. Satellite DNA,Satellite I DNA,DNA, Satellite I,DNAs, Satellite,DNAs, Satellite I,I DNA, Satellite,I DNAs, Satellite,Satellite DNAs,Satellite I DNAs
D005347 Fibroblasts Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules. Fibroblast
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001188 Artiodactyla An order of mammals which consists of the even-toed ungulates and includes both RUMINANTS and SWINE. Hippopotamus,Peccary,Peccaries
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

W S Modi, and D S Gallagher, and J E Womack
September 2006, Molecular phylogenetics and evolution,
W S Modi, and D S Gallagher, and J E Womack
May 1981, Evolution; international journal of organic evolution,
W S Modi, and D S Gallagher, and J E Womack
August 1984, The Journal of biological chemistry,
W S Modi, and D S Gallagher, and J E Womack
January 1998, Izvestiia Akademii nauk. Seriia biologicheskaia,
W S Modi, and D S Gallagher, and J E Womack
August 2020, Journal of anatomy,
W S Modi, and D S Gallagher, and J E Womack
May 1992, Molecular biology and evolution,
W S Modi, and D S Gallagher, and J E Womack
August 2013, Journal of morphology,
W S Modi, and D S Gallagher, and J E Womack
January 1997, Izvestiia Akademii nauk. Seriia biologicheskaia,
Copied contents to your clipboard!