The mariner transposable element in natural populations of Drosophila teissieri. 1996

F Brunet, and F Godin, and C Bazin, and J R David, and P Capy
Laboratoire Populations, Génétique et Evolution, CNRS, 91198 Gif sur Yvette, Cedex, France.

The mariner transposable elements of several natural populations of Drosophila teissieri, a rainforest species endemic to tropical Africa, were studied. Natural populations trapped along a transect from Zimbabwe to the Ivory Coast were analyzed by Southern blotting, in situ hybridization, cloning, and sequencing of PCR products. The Brazzaville population had some full-length elements, while the remaining populations had mainly deleted elements. The main class of deleted elements lacked a 500-bp segment. A mechanism is proposed that could generate such elements rapidly. In situ hybridizations showed that there are no mariner elements in pericentromeric heterochromatin. Finally, the phylogeny of the Mos1-like mariner full-length elements is consistent with vertical transmission from the ancestor of the melanogaster subgroup.

UI MeSH Term Description Entries
D008297 Male Males
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010802 Phylogeny The relationships of groups of organisms as reflected by their genetic makeup. Community Phylogenetics,Molecular Phylogenetics,Phylogenetic Analyses,Phylogenetic Analysis,Phylogenetic Clustering,Phylogenetic Comparative Analysis,Phylogenetic Comparative Methods,Phylogenetic Distance,Phylogenetic Generalized Least Squares,Phylogenetic Groups,Phylogenetic Incongruence,Phylogenetic Inference,Phylogenetic Networks,Phylogenetic Reconstruction,Phylogenetic Relatedness,Phylogenetic Relationships,Phylogenetic Signal,Phylogenetic Structure,Phylogenetic Tree,Phylogenetic Trees,Phylogenomics,Analyse, Phylogenetic,Analysis, Phylogenetic,Analysis, Phylogenetic Comparative,Clustering, Phylogenetic,Community Phylogenetic,Comparative Analysis, Phylogenetic,Comparative Method, Phylogenetic,Distance, Phylogenetic,Group, Phylogenetic,Incongruence, Phylogenetic,Inference, Phylogenetic,Method, Phylogenetic Comparative,Molecular Phylogenetic,Network, Phylogenetic,Phylogenetic Analyse,Phylogenetic Clusterings,Phylogenetic Comparative Analyses,Phylogenetic Comparative Method,Phylogenetic Distances,Phylogenetic Group,Phylogenetic Incongruences,Phylogenetic Inferences,Phylogenetic Network,Phylogenetic Reconstructions,Phylogenetic Relatednesses,Phylogenetic Relationship,Phylogenetic Signals,Phylogenetic Structures,Phylogenetic, Community,Phylogenetic, Molecular,Phylogenies,Phylogenomic,Reconstruction, Phylogenetic,Relatedness, Phylogenetic,Relationship, Phylogenetic,Signal, Phylogenetic,Structure, Phylogenetic,Tree, Phylogenetic
D004251 DNA Transposable Elements Discrete segments of DNA which can excise and reintegrate to another site in the genome. Most are inactive, i.e., have not been found to exist outside the integrated state. DNA transposable elements include bacterial IS (insertion sequence) elements, Tn elements, the maize controlling elements Ac and Ds, Drosophila P, gypsy, and pogo elements, the human Tigger elements and the Tc and mariner elements which are found throughout the animal kingdom. DNA Insertion Elements,DNA Transposons,IS Elements,Insertion Sequence Elements,Tn Elements,Transposable Elements,Elements, Insertion Sequence,Sequence Elements, Insertion,DNA Insertion Element,DNA Transposable Element,DNA Transposon,Element, DNA Insertion,Element, DNA Transposable,Element, IS,Element, Insertion Sequence,Element, Tn,Element, Transposable,Elements, DNA Insertion,Elements, DNA Transposable,Elements, IS,Elements, Tn,Elements, Transposable,IS Element,Insertion Element, DNA,Insertion Elements, DNA,Insertion Sequence Element,Sequence Element, Insertion,Tn Element,Transposable Element,Transposable Element, DNA,Transposable Elements, DNA,Transposon, DNA,Transposons, DNA
D004330 Drosophila A genus of small, two-winged flies containing approximately 900 described species. These organisms are the most extensively studied of all genera from the standpoint of genetics and cytology. Fruit Fly, Drosophila,Drosophila Fruit Flies,Drosophila Fruit Fly,Drosophilas,Flies, Drosophila Fruit,Fly, Drosophila Fruit,Fruit Flies, Drosophila
D005260 Female Females
D000349 Africa The continent south of EUROPE, east of the ATLANTIC OCEAN and west of the INDIAN OCEAN.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012689 Sequence Homology, Nucleic Acid The sequential correspondence of nucleotides in one nucleic acid molecule with those of another nucleic acid molecule. Sequence homology is an indication of the genetic relatedness of different organisms and gene function. Base Sequence Homology,Homologous Sequences, Nucleic Acid,Homologs, Nucleic Acid Sequence,Homology, Base Sequence,Homology, Nucleic Acid Sequence,Nucleic Acid Sequence Homologs,Nucleic Acid Sequence Homology,Sequence Homology, Base,Base Sequence Homologies,Homologies, Base Sequence,Sequence Homologies, Base

Related Publications

F Brunet, and F Godin, and C Bazin, and J R David, and P Capy
July 2008, Heredity,
F Brunet, and F Godin, and C Bazin, and J R David, and P Capy
November 1996, Proceedings. Biological sciences,
F Brunet, and F Godin, and C Bazin, and J R David, and P Capy
June 1991, Genetics,
F Brunet, and F Godin, and C Bazin, and J R David, and P Capy
October 1990, Proceedings. Biological sciences,
F Brunet, and F Godin, and C Bazin, and J R David, and P Capy
September 2004, Yi chuan = Hereditas,
F Brunet, and F Godin, and C Bazin, and J R David, and P Capy
May 1990, Genetics,
F Brunet, and F Godin, and C Bazin, and J R David, and P Capy
July 1993, Genetics,
F Brunet, and F Godin, and C Bazin, and J R David, and P Capy
May 1996, Genetics,
F Brunet, and F Godin, and C Bazin, and J R David, and P Capy
January 1992, Genetica,
F Brunet, and F Godin, and C Bazin, and J R David, and P Capy
January 1997, Genetica,
Copied contents to your clipboard!