Calcium channel types contributing to excitatory and inhibitory synaptic transmission between individual hypothalamic neurons. 1996

H U Zeilhofer, and T H Müller, and D Swandulla
Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität Erlangen-Nürnberg, Universitätsstrasse 22, D-91054 Erlangen, Germany.

The contribution of L-, N-, P- and Q-type Ca2+ channels to excitatory and inhibitory synaptic transmission and to whole-cell Ba2+ currents through Ca2+ channels (Ba2+ currents) was investigated in rat hypothalamic neurons grown in dissociated cell culture. Excitatory and inhibitory postsynaptic currents (EPSCs and IPSCs) were evoked by stimulating individual neurons under whole-cell patch-clamp conditions. The different types of high-voltage-activated (HVA) Ca2+ channels were identified using nifedipine, omega-Conus geographus toxin VIA (omega-CTx GVIA), omega-Agelenopsis aperta toxin IVA (omega-Aga IVA), and omega-Conus magus toxin VIIC (omega-CTx MVIIC). N-, but not P- or Q-type Ca2+ channels contributed to excitatory as well as inhibitory synaptic transmission together with Ca2+ channels resistant to the aforementioned Ca2+ channel blockers (resistant Ca2+ channels). Reduction of postsynaptic current (PSC) amplitudes by N-type Ca2+ channel blockers was significantly stronger for IPSCs than for EPSCs. In most neurons whole-cell Ba2+ currents were carried by L-type Ca2+ channels and by at least two other Ca2+ channel types, one of which is probably of the Q-type and the others are resistant Ca2+ channels. These results indicate a different contribution of the various Ca2+ channel types to excitatory and inhibitory synaptic transmission and to whole-cell currents in these neurons and suggest different functional roles for the distinct Ca2+ channel types.

UI MeSH Term Description Entries
D007031 Hypothalamus Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002121 Calcium Channel Blockers A class of drugs that act by selective inhibition of calcium influx through cellular membranes. Calcium Antagonists, Exogenous,Calcium Blockaders, Exogenous,Calcium Channel Antagonist,Calcium Channel Blocker,Calcium Channel Blocking Drug,Calcium Inhibitors, Exogenous,Channel Blockers, Calcium,Exogenous Calcium Blockader,Exogenous Calcium Inhibitor,Calcium Channel Antagonists,Calcium Channel Blocking Drugs,Exogenous Calcium Antagonists,Exogenous Calcium Blockaders,Exogenous Calcium Inhibitors,Antagonist, Calcium Channel,Antagonists, Calcium Channel,Antagonists, Exogenous Calcium,Blockader, Exogenous Calcium,Blocker, Calcium Channel,Blockers, Calcium Channel,Calcium Blockader, Exogenous,Calcium Inhibitor, Exogenous,Channel Antagonist, Calcium,Channel Blocker, Calcium,Inhibitor, Exogenous Calcium
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001464 Barium An element of the alkaline earth group of metals. It has an atomic symbol Ba, atomic number 56, and atomic weight 138. All of its acid-soluble salts are poisonous.
D015220 Calcium Channels Voltage-dependent cell membrane glycoproteins selectively permeable to calcium ions. They are categorized as L-, T-, N-, P-, Q-, and R-types based on the activation and inactivation kinetics, ion specificity, and sensitivity to drugs and toxins. The L- and T-types are present throughout the cardiovascular and central nervous systems and the N-, P-, Q-, & R-types are located in neuronal tissue. Ion Channels, Calcium,Receptors, Calcium Channel Blocker,Voltage-Dependent Calcium Channel,Calcium Channel,Calcium Channel Antagonist Receptor,Calcium Channel Antagonist Receptors,Calcium Channel Blocker Receptor,Calcium Channel Blocker Receptors,Ion Channel, Calcium,Receptors, Calcium Channel Antagonist,VDCC,Voltage-Dependent Calcium Channels,Calcium Channel, Voltage-Dependent,Calcium Channels, Voltage-Dependent,Calcium Ion Channel,Calcium Ion Channels,Channel, Voltage-Dependent Calcium,Channels, Voltage-Dependent Calcium,Voltage Dependent Calcium Channel,Voltage Dependent Calcium Channels

Related Publications

H U Zeilhofer, and T H Müller, and D Swandulla
January 1997, Brain research,
H U Zeilhofer, and T H Müller, and D Swandulla
February 2003, The Journal of biological chemistry,
H U Zeilhofer, and T H Müller, and D Swandulla
January 2017, eLife,
H U Zeilhofer, and T H Müller, and D Swandulla
January 2000, The Journal of neuroscience : the official journal of the Society for Neuroscience,
H U Zeilhofer, and T H Müller, and D Swandulla
January 2007, Alcoholism, clinical and experimental research,
H U Zeilhofer, and T H Müller, and D Swandulla
January 2021, Brain research,
H U Zeilhofer, and T H Müller, and D Swandulla
September 2022, eLife,
H U Zeilhofer, and T H Müller, and D Swandulla
November 1993, Neuron,
Copied contents to your clipboard!