Probing the active-site residues in Saccharomyces cerevisiae ferrochelatase by directed mutagenesis. In vivo and in vitro analyses. 1996

M Gora, and E Grzybowska, and J Rytka, and R Labbe-Bois
Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.

Ferrochelatase is a mitochondrial inner membrane-bound enzyme that catalyzes the insertion of ferrous iron into protoporphyrin, the terminal step in protoheme biosynthesis. The functional/structural roles of 10 invariant amino acid residues were investigated by site-directed mutagenesis in the yeast Saccharomyces cerevisiae ferrochelatase. The mutant enzymes were expressed in a yeast strain lacking the ferrochelatase gene HEM15 and in Escherichia coli. The kinetic parameters of the mutant enzymes were determined for the enzymes associated with the yeast membranes and the enzymes in the bacterial soluble fraction. They were compared with the in vivo functioning of the mutant enzymes. The main conclusions are the following. Glu-314 is critical for catalysis, and we suggest that it is the base responsible for abstracting the N-pyrrole proton(s). His-235 is essential for metal binding. Asp-246 and Tyr-248 are also involved in metal binding in a synergistic manner. The Km for protoporphyrin was also increased in the H235L, D246A, and Y248L mutants, suggesting that the binding sites of the two substrates are not independent of each other. The R87A, Y95L, Q111E, Q273E, W282L, and F308A mutants had 1.2-2-fold increased Vm and 4-10-fold increased Km values for protoporphyrin, but the amount of heme made in vivo was 10-100% of the normal value. These mutations probably affected the geometry of the active center, resulting in improper positioning of protoporphyrin.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D005294 Ferrochelatase A mitochondrial enzyme found in a wide variety of cells and tissues. It is the final enzyme in the 8-enzyme biosynthetic pathway of HEME. Ferrochelatase catalyzes ferrous insertion into protoporphyrin IX to form protoheme or heme. Deficiency in this enzyme results in ERYTHROPOIETIC PROTOPORPHYRIA. Heme Synthetase,Porphyrin-Metal Chelatase,Protoheme Ferro-Lyase,Zinc Chelatase,Chelatase, Porphyrin-Metal,Chelatase, Zinc,Ferro-Lyase, Protoheme,Porphyrin Metal Chelatase,Protoheme Ferro Lyase,Synthetase, Heme
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D016297 Mutagenesis, Site-Directed Genetically engineered MUTAGENESIS at a specific site in the DNA molecule that introduces a base substitution, or an insertion or deletion. Mutagenesis, Oligonucleotide-Directed,Mutagenesis, Site-Specific,Oligonucleotide-Directed Mutagenesis,Site-Directed Mutagenesis,Site-Specific Mutagenesis,Mutageneses, Oligonucleotide-Directed,Mutageneses, Site-Directed,Mutageneses, Site-Specific,Mutagenesis, Oligonucleotide Directed,Mutagenesis, Site Directed,Mutagenesis, Site Specific,Oligonucleotide Directed Mutagenesis,Oligonucleotide-Directed Mutageneses,Site Directed Mutagenesis,Site Specific Mutagenesis,Site-Directed Mutageneses,Site-Specific Mutageneses

Related Publications

M Gora, and E Grzybowska, and J Rytka, and R Labbe-Bois
March 1990, Molecular and cellular biology,
M Gora, and E Grzybowska, and J Rytka, and R Labbe-Bois
May 2004, The Journal of biological chemistry,
M Gora, and E Grzybowska, and J Rytka, and R Labbe-Bois
April 1997, Journal of protein chemistry,
M Gora, and E Grzybowska, and J Rytka, and R Labbe-Bois
January 1991, Advances in experimental medicine and biology,
M Gora, and E Grzybowska, and J Rytka, and R Labbe-Bois
December 1988, European journal of biochemistry,
M Gora, and E Grzybowska, and J Rytka, and R Labbe-Bois
October 2015, Archives of biochemistry and biophysics,
M Gora, and E Grzybowska, and J Rytka, and R Labbe-Bois
December 1989, The Journal of biological chemistry,
M Gora, and E Grzybowska, and J Rytka, and R Labbe-Bois
July 1995, FEBS letters,
M Gora, and E Grzybowska, and J Rytka, and R Labbe-Bois
July 2014, Biochimica et biophysica acta,
Copied contents to your clipboard!