Ligand-dependent cross-talk between steroid and thyroid hormone receptors. Evidence for common transcriptional coactivator(s). 1996

X Zhang, and M Jeyakumar, and M K Bagchi
Population Council and the Rockefeller University, New York, New York 10021, USA.

Steroid and thyroid hormone receptors exhibit striking structural and functional similarity, suggesting that these nuclear receptors may enhance transcription of target genes by similar mechanisms. To address this issue, we studied transcriptional interference between progesterone and thyroid hormone receptors in vivo and in vitro. We observed that transcriptional interference occurred in a ligand-dependent manner between progesterone receptor-B (PR-B) and thyroid hormone receptor (TR) alpha or beta in transient transfection experiments. Ligand-occupied TRalpha or TRbeta, but not the unliganded receptor, strongly suppressed transactivation of a progesterone-responsive reporter gene by endogenous PRs in human breast carcinoma T47D cells. Ligand-dependent inhibitory cross-talk also occurred between transfected PR-B and TRalpha or TRbeta and vice versa in CV1 cells. This phenomenon did not require DNA binding by the "interfering" receptor but required it to be hormone-bound, indicating that a transcriptionally active form of the interfering receptor is essential for the interfering effect. To analyze further the mechanism of the ligand-dependent cross-talk, we reproduced transcriptional interference between PR and TR in a cell-free transcription system. We observed that the addition of triiodothyronine-bound recombinant TRbeta or a ligand binding domain (LBD) peptide(145-456) inhibited specifically transcriptional activation of a progesterone-responsive gene by endogenous PRs in nuclear extracts of T47D cells, while the basal level of transcription from a minimal TATA-promoter or transcription from an adenovirus major-late promoter remained unaffected. These results indicated that a transactivation function within the LBD of the interfering receptor TRbeta was likely to interact with a mediator protein(s), termed coactivator, that is distinct from basal transcription factors and is critical for efficient PR-induced transactivation. This concept was reinforced by biochemical evidence that treatment of T47D extracts with immobilized TRbeta LBD depleted the extract of the coactivator function in a triiodothyronine-dependent manner and markedly impaired progesterone-induced transactivation of progesterone response element-linked genes. Deletion of six amino acids(451-456) in the extreme COOH terminus of TRbeta resulted in a receptor that retained the ability to bind thyroid hormone but failed to inhibit progesterone-dependent transcription. Interestingly, these six amino acids are present in a region that is highly conserved among various nuclear hormone receptors and contains a ligand-dependent transactivation function, AF-2. Based on these results, we propose that a limiting coactivator protein(s) interacts with the AF-2 of PR or TR and mediates transactivation by the ligand-bound receptor. This regulatory molecule(s) may therefore serve as a common functional link between the pathways of hormone-inducible gene activation by various members of the nuclear receptor superfamily.

UI MeSH Term Description Entries
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D011374 Progesterone The major progestational steroid that is secreted primarily by the CORPUS LUTEUM and the PLACENTA. Progesterone acts on the UTERUS, the MAMMARY GLANDS and the BRAIN. It is required in EMBRYO IMPLANTATION; PREGNANCY maintenance, and the development of mammary tissue for MILK production. Progesterone, converted from PREGNENOLONE, also serves as an intermediate in the biosynthesis of GONADAL STEROID HORMONES and adrenal CORTICOSTEROIDS. Pregnenedione,Progesterone, (13 alpha,17 alpha)-(+-)-Isomer,Progesterone, (17 alpha)-Isomer,Progesterone, (9 beta,10 alpha)-Isomer
D011980 Receptors, Progesterone Specific proteins found in or on cells of progesterone target tissues that specifically combine with progesterone. The cytosol progesterone-receptor complex then associates with the nucleic acids to initiate protein synthesis. There are two kinds of progesterone receptors, A and B. Both are induced by estrogen and have short half-lives. Progesterone Receptors,Progestin Receptor,Progestin Receptors,Receptor, Progesterone,Receptors, Progestin,Progesterone Receptor,Receptor, Progestin
D011988 Receptors, Thyroid Hormone Specific high affinity binding proteins for THYROID HORMONES in target cells. They are usually found in the nucleus and regulate DNA transcription. These receptors are activated by hormones that leads to transcription, cell differentiation, and growth suppression. Thyroid hormone receptors are encoded by two genes (GENES, ERBA): erbA-alpha and erbA-beta for alpha and beta thyroid hormone receptors, respectively. Diiodotyrosine Receptors,Receptors, Diiodotyrosine,Receptors, Thyroxine,Receptors, Triiodothyronine,T3 Receptors,T4 Receptors,Thyroid Hormone Receptors,Thyroxine Receptors,Triiodothyronine Receptors,DIT Receptors,Diiodotyrosine Receptor,MIT Receptors,Monoiodotyrosine Receptors,Receptors, DIT,Receptors, MIT,Receptors, Monoiodotyrosine,Receptors, T3,Receptors, T4,T3 Receptor,T4 Receptor,Thyroid Hormone Receptor,Thyroxine Receptor
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D001943 Breast Neoplasms Tumors or cancer of the human BREAST. Breast Cancer,Breast Tumors,Cancer of Breast,Breast Carcinoma,Cancer of the Breast,Human Mammary Carcinoma,Malignant Neoplasm of Breast,Malignant Tumor of Breast,Mammary Cancer,Mammary Carcinoma, Human,Mammary Neoplasm, Human,Mammary Neoplasms, Human,Neoplasms, Breast,Tumors, Breast,Breast Carcinomas,Breast Malignant Neoplasm,Breast Malignant Neoplasms,Breast Malignant Tumor,Breast Malignant Tumors,Breast Neoplasm,Breast Tumor,Cancer, Breast,Cancer, Mammary,Cancers, Mammary,Carcinoma, Breast,Carcinoma, Human Mammary,Carcinomas, Breast,Carcinomas, Human Mammary,Human Mammary Carcinomas,Human Mammary Neoplasm,Human Mammary Neoplasms,Mammary Cancers,Mammary Carcinomas, Human,Neoplasm, Breast,Neoplasm, Human Mammary,Neoplasms, Human Mammary,Tumor, Breast
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D002474 Cell-Free System A fractionated cell extract that maintains a biological function. A subcellular fraction isolated by ultracentrifugation or other separation techniques must first be isolated so that a process can be studied free from all of the complex side reactions that occur in a cell. The cell-free system is therefore widely used in cell biology. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p166) Cellfree System,Cell Free System,Cell-Free Systems,Cellfree Systems,System, Cell-Free,System, Cellfree,Systems, Cell-Free,Systems, Cellfree
D002522 Chlorocebus aethiops A species of CERCOPITHECUS containing three subspecies: C. tantalus, C. pygerythrus, and C. sabeus. They are found in the forests and savannah of Africa. The African green monkey is the natural host of SIMIAN IMMUNODEFICIENCY VIRUS and is used in AIDS research. African Green Monkey,Cercopithecus aethiops,Cercopithecus griseoviridis,Cercopithecus griseus,Cercopithecus pygerythrus,Cercopithecus sabeus,Cercopithecus tantalus,Chlorocebus cynosuros,Chlorocebus cynosurus,Chlorocebus pygerythrus,Green Monkey,Grivet Monkey,Lasiopyga weidholzi,Malbrouck,Malbrouck Monkey,Monkey, African Green,Monkey, Green,Monkey, Grivet,Monkey, Vervet,Savanah Monkey,Vervet Monkey,Savannah Monkey,African Green Monkey,Chlorocebus cynosuro,Green Monkey, African,Green Monkeys,Grivet Monkeys,Malbrouck Monkeys,Malbroucks,Monkey, Malbrouck,Monkey, Savanah,Monkey, Savannah,Savannah Monkeys,Vervet Monkeys

Related Publications

X Zhang, and M Jeyakumar, and M K Bagchi
June 2006, Genes & development,
X Zhang, and M Jeyakumar, and M K Bagchi
October 2021, Biochemical and biophysical research communications,
X Zhang, and M Jeyakumar, and M K Bagchi
December 1992, Trends in endocrinology and metabolism: TEM,
X Zhang, and M Jeyakumar, and M K Bagchi
June 1998, Journal of molecular medicine (Berlin, Germany),
X Zhang, and M Jeyakumar, and M K Bagchi
January 1998, Molecular endocrinology (Baltimore, Md.),
X Zhang, and M Jeyakumar, and M K Bagchi
December 2004, The Journal of steroid biochemistry and molecular biology,
X Zhang, and M Jeyakumar, and M K Bagchi
January 2001, Methods in molecular biology (Clifton, N.J.),
X Zhang, and M Jeyakumar, and M K Bagchi
December 1991, Endocrinology and metabolism clinics of North America,
Copied contents to your clipboard!