Schizosaccharomyces pombe proliferating cell nuclear antigen mutations affect DNA polymerase delta processivity. 1996

M P Arroyo, and K M Downey, and A G So, and T S Wang
Department of Pathology, Stanford University School of Medicine, Stanford, California 94305-5324, USA.

We introduced nine site-directed mutations into seven conserved fission yeast proliferative cell nuclear antigen (PCNA) residues, Leu2, Asp63, Arg64, Gly69, Gln201, Glu259, and Glu260, either as single or as double mutants. Both the recombinant wild type and mutant PCNAs were able to form homotrimers in solution and to sustain growth of a null pcna strain (Deltapcna). Wild type Schizosaccharomyces pombe PCNA and PCNA proteins with mutations in Asp63, Gln201, Glu259, or Glu260 to Ala were able to stimulate DNA synthetic activity and to enhance the processivity of calf thymus DNA polymerase delta holoenzyme similar to calf thymus PCNA. Mutations of Leu2 to Val or Arg64 to Ala, either singly or as a double mutant, yielded PCNA mutant proteins that had reduced capacity in enhancing the processivity of DNA polymerase delta but showed no deficiency in stimulation of the ATPase activity of replication factor C. S. pombe Deltapcna strains sustained by these two mutant-pcna alleles had moderate defects in growth and displayed elongated phenotypes. These cells, however, were not sensitive to UV irradiation. Together, these in vitro and in vivo studies suggest that the side chains of Leu2 and Arg64 in one face of the PCNA trimer ring structure are two of the several sites involved in tethering DNA polymerase delta for processive DNA synthesis during DNA replication.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008961 Models, Structural A representation, generally small in scale, to show the structure, construction, or appearance of something. (From Random House Unabridged Dictionary, 2d ed) Model, Structural,Structural Model,Structural Models
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D012097 Repressor Proteins Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release. Repressor Molecules,Transcriptional Silencing Factors,Proteins, Repressor,Silencing Factors, Transcriptional
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002850 Chromatography, Gel Chromatography on non-ionic gels without regard to the mechanism of solute discrimination. Chromatography, Exclusion,Chromatography, Gel Permeation,Chromatography, Molecular Sieve,Gel Filtration,Gel Filtration Chromatography,Chromatography, Size Exclusion,Exclusion Chromatography,Gel Chromatography,Gel Permeation Chromatography,Molecular Sieve Chromatography,Chromatography, Gel Filtration,Exclusion Chromatography, Size,Filtration Chromatography, Gel,Filtration, Gel,Sieve Chromatography, Molecular,Size Exclusion Chromatography
D004258 DNA Polymerase III A DNA-dependent DNA polymerase characterized in E. coli and other lower organisms but may be present in higher organisms. Use also for a more complex form of DNA polymerase III designated as DNA polymerase III* or pol III* which is 15 times more active biologically than DNA polymerase I in the synthesis of DNA. This polymerase has both 3'-5' and 5'-3' exonuclease activities, is inhibited by sulfhydryl reagents, and has the same template-primer dependence as pol II. DNA Polymerase delta,DNA-Dependent DNA Polymerase III,DNA Pol III,DNA Dependent DNA Polymerase III,Polymerase III, DNA,Polymerase delta, DNA
D004259 DNA-Directed DNA Polymerase DNA-dependent DNA polymerases found in bacteria, animal and plant cells. During the replication process, these enzymes catalyze the addition of deoxyribonucleotide residues to the end of a DNA strand in the presence of DNA as template-primer. They also possess exonuclease activity and therefore function in DNA repair. DNA Polymerase,DNA Polymerases,DNA-Dependent DNA Polymerases,DNA Polymerase N3,DNA Dependent DNA Polymerases,DNA Directed DNA Polymerase,DNA Polymerase, DNA-Directed,DNA Polymerases, DNA-Dependent,Polymerase N3, DNA,Polymerase, DNA,Polymerase, DNA-Directed DNA,Polymerases, DNA,Polymerases, DNA-Dependent DNA
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D005800 Genes, Fungal The functional hereditary units of FUNGI. Fungal Genes,Fungal Gene,Gene, Fungal

Related Publications

M P Arroyo, and K M Downey, and A G So, and T S Wang
July 1999, Methods (San Diego, Calif.),
M P Arroyo, and K M Downey, and A G So, and T S Wang
October 1993, The Journal of biological chemistry,
M P Arroyo, and K M Downey, and A G So, and T S Wang
November 1997, Molecular and cellular biology,
M P Arroyo, and K M Downey, and A G So, and T S Wang
March 1989, Nucleic acids research,
M P Arroyo, and K M Downey, and A G So, and T S Wang
December 1996, The Journal of biological chemistry,
M P Arroyo, and K M Downey, and A G So, and T S Wang
June 1997, Proceedings of the National Academy of Sciences of the United States of America,
M P Arroyo, and K M Downey, and A G So, and T S Wang
January 1987, Nature,
M P Arroyo, and K M Downey, and A G So, and T S Wang
June 2000, The Journal of biological chemistry,
M P Arroyo, and K M Downey, and A G So, and T S Wang
October 1997, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!