Cloning of a cDNA encoding an aldehyde dehydrogenase and its expression in Escherichia coli. Recognition of retinal as substrate. 1996

X Wang, and P Penzes, and J L Napoli
Department of Biochemistry, School of Medicine and Biomedical Sciences, State University of New York, Buffalo, New York 14214, USA.

The biosynthesis of the hormone retinoic acid from retinol (vitamin A) involves two sequential steps, catalyzed by retinol dehydrogenases and retinal dehydrogenases, respectively. This report describes the cloning of a cDNA encoding a heretofore unknown aldehyde dehydrogenase from a rat testis library and its expression in Escherichia coli. This enzyme has been designated retinal dehydrogenase, type II, RalDH(II). The deduced amino acid sequence of RalDH(II) had the highest identity with mammalian aldehyde dehydrogenases that feature low Km values (microM) for retinal: human ALDH1 (72.2%), rat retinal dehydrogenase, type I (71.5%), bovine retina (72.7%), and mouse AHD-2 (71.5%). RalDH(II) expressed in E. coli recognizes as substrates free retinal, with a Km of approximately 0.7 microM, and cellular retinol-binding protein-bound retinal, with a Km of approximately 0.2 microM. RalDH(II) also can utilize as substrate retinal generated in situ by microsomal retinol dehydrogenases, from the physiologically most abundant substrate: retinol bound to cellular retinol-binding protein. Rat testis expresses RalDH(II) mRNA most abundantly, followed by (relative to testis): lung (6.7%), brain (6.3%), heart (5.2%), liver (4.4%), and kidney (2.7%). RalDH(II) does not recognize citral, benzaldehyde, acetaldehyde, and propanal efficiently as substrates, but does metabolize octanal and decanal efficiently. These data support a function for RalDH(II) in the pathway of retinoic acid biogenesis.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D008861 Microsomes Artifactual vesicles formed from the endoplasmic reticulum when cells are disrupted. They are isolated by differential centrifugation and are composed of three structural features: rough vesicles, smooth vesicles, and ribosomes. Numerous enzyme activities are associated with the microsomal fraction. (Glick, Glossary of Biochemistry and Molecular Biology, 1990; from Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Microsome
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000072467 Cytochrome P450 Family 2 A cytochrome P450 enzyme family that includes members which function in the metabolism of STEROIDS; COUMARINS; and NICOTINE. CYP2 Enzymes,CYP2 Family

Related Publications

X Wang, and P Penzes, and J L Napoli
February 1992, The Journal of biological chemistry,
X Wang, and P Penzes, and J L Napoli
October 2002, Chinese medical journal,
X Wang, and P Penzes, and J L Napoli
January 1999, Advances in experimental medicine and biology,
X Wang, and P Penzes, and J L Napoli
January 1991, Gene,
X Wang, and P Penzes, and J L Napoli
April 2001, Wei sheng wu xue bao = Acta microbiologica Sinica,
X Wang, and P Penzes, and J L Napoli
December 1996, Protein expression and purification,
X Wang, and P Penzes, and J L Napoli
July 1997, Biochemical and biophysical research communications,
Copied contents to your clipboard!