Inducing the loss of immunoglobulin lambda light chain production and the rearrangement of a previously excluded allele in human plasma B cell lines with concanavalin A. 1996

H Tachibana, and Y Ushio, and C Krungkasem, and S Shirahata
Graduate School of Genetic Resources Technology, Kyushu University, 6-10-1, Hakozaki, Fukuoka, Japan.

We investigated the expression of differential lambda light chains in human B cell lines secreting immunoglobulin (Ig). When these cell lines were cultured with concanavalin A for a long period of time, a subpopulation of some but not all of these cell lines was induced to express new lambda light chains replacing the original lambda chain (light chain shifting). Production of the new lambda chain, which replaces the original lambda chain, results from a VJ rearrangement at a previously excluded allele and a dramatic reduction of the original lambda chain transcript, although no difference was found in the level of heavy chain transcript. Recombination activating genes RAG-1 and RAG-2, which are normally expressed during specific early stages of lymphocyte development, were expressed in not only the light chain shifting-inducible lines but also in the non-inducible cells. Treatment of these Ig secreting cell lines with dibutyryl cAMP, which is known to enhance expression of the RAG genes, could not induce the creation of new lambda light chain-producing cells from the inducible lines, suggesting that the expression of the two RAG genes is not sufficient for inducing new lambda light chain production. Concanavalin A induced a gradual but significant production lost of the original lambda chain in a subpopulation of the light chain shifting-inducible cells but not in the non-inducible cells. Association of new lambda light chain production with loss of original lambda chain raises the possibility that, when the RAG genes are expressed, concanavalin A may act on a novel intracellular mechanism controlling lambda light chain allelic exclusion in these plasma cell lines.

UI MeSH Term Description Entries
D007146 Immunoglobulin lambda-Chains One of the types of light chain subunits of the immunoglobulins with a molecular weight of approximately 22 kDa. Ig lambda Chains,Immunoglobulins, lambda-Chain,Immunoglobulin lambda-Chain,lambda-1-Immunoglobulin,lambda-2-Immunoglobulin,lambda-Chain Immunoglobulins,lambda-Immunoglobulin Light Chain,lambda-Immunoglobulin Light Chains,lambda-x Immunoglobulin,Chains, Ig lambda,Chains, lambda-Immunoglobulin Light,Immunoglobulin lambda Chain,Immunoglobulin lambda Chains,Immunoglobulin, lambda-x,Immunoglobulins, lambda Chain,Light Chain, lambda-Immunoglobulin,Light Chains, lambda-Immunoglobulin,lambda 1 Immunoglobulin,lambda 2 Immunoglobulin,lambda Chain Immunoglobulins,lambda Chains, Ig,lambda Immunoglobulin Light Chain,lambda Immunoglobulin Light Chains,lambda x Immunoglobulin,lambda-Chain, Immunoglobulin,lambda-Chains, Immunoglobulin
D008175 Lung Neoplasms Tumors or cancer of the LUNG. Cancer of Lung,Lung Cancer,Pulmonary Cancer,Pulmonary Neoplasms,Cancer of the Lung,Neoplasms, Lung,Neoplasms, Pulmonary,Cancer, Lung,Cancer, Pulmonary,Cancers, Lung,Cancers, Pulmonary,Lung Cancers,Lung Neoplasm,Neoplasm, Lung,Neoplasm, Pulmonary,Pulmonary Cancers,Pulmonary Neoplasm
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009687 Nuclear Proteins Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus. Nucleolar Protein,Nucleolar Proteins,Nuclear Protein,Protein, Nuclear,Protein, Nucleolar,Proteins, Nuclear,Proteins, Nucleolar
D002051 Burkitt Lymphoma A form of undifferentiated malignant LYMPHOMA usually found in central Africa, but also reported in other parts of the world. It is commonly manifested as a large osteolytic lesion in the jaw or as an abdominal mass. B-cell antigens are expressed on the immature cells that make up the tumor in virtually all cases of Burkitt lymphoma. The Epstein-Barr virus (HERPESVIRUS 4, HUMAN) has been isolated from Burkitt lymphoma cases in Africa and it is implicated as the causative agent in these cases; however, most non-African cases are EBV-negative. African Lymphoma,Burkitt Cell Leukemia,Burkitt Tumor,Lymphoma, Burkitt,Burkitt Leukemia,Burkitt's Leukemia,Burkitt's Lymphoma,Burkitt's Tumor,Leukemia, Lymphoblastic, Burkitt-Type,Leukemia, Lymphocytic, L3,Lymphocytic Leukemia, L3,Burkitts Leukemia,Burkitts Lymphoma,Burkitts Tumor,L3 Lymphocytic Leukemia,L3 Lymphocytic Leukemias,Leukemia, Burkitt,Leukemia, Burkitt Cell,Leukemia, Burkitt's,Leukemia, L3 Lymphocytic,Lymphoma, African,Lymphoma, Burkitt's,Tumor, Burkitt,Tumor, Burkitt's
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003208 Concanavalin A A MANNOSE/GLUCOSE binding lectin isolated from the jack bean (Canavalia ensiformis). It is a potent mitogen used to stimulate cell proliferation in lymphocytes, primarily T-lymphocyte, cultures.
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D005803 Genes, Immunoglobulin Genes encoding the different subunits of the IMMUNOGLOBULINS, for example the IMMUNOGLOBULIN LIGHT CHAIN GENES and the IMMUNOGLOBULIN HEAVY CHAIN GENES. The heavy and light immunoglobulin genes are present as gene segments in the germline cells. The completed genes are created when the segments are shuffled and assembled (B-LYMPHOCYTE GENE REARRANGEMENT) during B-LYMPHOCYTE maturation. The gene segments of the human light and heavy chain germline genes are symbolized V (variable), J (joining) and C (constant). The heavy chain germline genes have an additional segment D (diversity). Genes, Ig,Immunoglobulin Genes,Gene, Ig,Gene, Immunoglobulin,Ig Gene,Ig Genes,Immunoglobulin Gene

Related Publications

H Tachibana, and Y Ushio, and C Krungkasem, and S Shirahata
April 2019, British journal of haematology,
H Tachibana, and Y Ushio, and C Krungkasem, and S Shirahata
March 1986, Proceedings of the National Academy of Sciences of the United States of America,
H Tachibana, and Y Ushio, and C Krungkasem, and S Shirahata
July 1988, European journal of cancer & clinical oncology,
H Tachibana, and Y Ushio, and C Krungkasem, and S Shirahata
April 1989, Science (New York, N.Y.),
H Tachibana, and Y Ushio, and C Krungkasem, and S Shirahata
June 2002, Seminars in immunology,
H Tachibana, and Y Ushio, and C Krungkasem, and S Shirahata
November 2022, Veterinary immunology and immunopathology,
H Tachibana, and Y Ushio, and C Krungkasem, and S Shirahata
February 1999, Molecular immunology,
H Tachibana, and Y Ushio, and C Krungkasem, and S Shirahata
June 1981, Nature,
H Tachibana, and Y Ushio, and C Krungkasem, and S Shirahata
July 1983, American journal of clinical pathology,
H Tachibana, and Y Ushio, and C Krungkasem, and S Shirahata
March 2015, International journal of oncology,
Copied contents to your clipboard!