An animal cell mutant defective in heparan sulfate hexuronic acid 2-O-sulfation. 1996

X Bai, and J D Esko
Department of Biochemistry, Schools of Medicine and Dentistry, University of Alabama at Birmingham, 35294, USA.

The interaction of heparan sulfate with protein ligands depends on unique oligosaccharide sequences containing iduronic acid (IdUA), N-sulfated glucosamine residues, and O-sulfated sugars. To study the role of O-sulfation in greater detail, we isolated a Chinese hamster ovary cell mutant defective in 2-O-sulfation of iduronic acid. The mutant, pgsF-17, was identified by a colony blotting assay in which colonies of mutagen-treated cells were replica plated to two disks of polyester cloth. One disk was blotted with 125I-labeled basic fibroblast growth factor (bFGF) to measure binding to cell surface proteoglycans. The other disk was incubated with 35SO4 to measure proteoglycan biosynthesis. Autoradiography revealed a colony that did not bind 125I-bFGF, but incorporated 35SO4 normally (mutant pgsF-17). Complete deaminative cleavage of heparan sulfate revealed that material from pgsF-17 lacked IdUA(2OSO3)-GlcNSO3 and IdUA(2OSO3)-GlcNSO3(6OSO3), but contained a higher proportion of glucuronic acid GlcUA-GlcNSO3(6OSO3) and IdUA-GlcNSO3(6OSO3). Assay of the 2-O-sulfotransferase that acts on IdUA residues showed that mutant 17 lacked enzyme activity. Interestingly, the alteration resulted in accumulation of GlcNSO3 groups, suggesting that under normal conditions 2-O-sulfation decreases GlcNAc N-deacetylation/N-sulfation, and that the reactions occur simultaneously. The formation of IdUA and 6-O-sulfated glucosaminyl residues appears to be independent of 2-O-sulfation. pgsF-17 also lacks 2-O-sulfated GlcUA residues, suggesting that the same enzyme is responsible for 2-O-sulfation of IdUA and GlcUA residues. Mutant 17 provides a useful tool for studying the regulation of heparan sulfate biosynthesis and the relationship of heparan sulfate fine structure to its biological function.

UI MeSH Term Description Entries
D007067 Iduronic Acid Component of dermatan sulfate. Differs in configuration from glucuronic acid only at the C-5 position. Iduronate,Acid, Iduronic
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D002240 Carbohydrate Sequence The sequence of carbohydrates within POLYSACCHARIDES; GLYCOPROTEINS; and GLYCOLIPIDS. Carbohydrate Sequences,Sequence, Carbohydrate,Sequences, Carbohydrate
D004187 Disaccharides Oligosaccharides containing two monosaccharide units linked by a glycosidic bond. Disaccharide
D005965 Glucuronates Derivatives of GLUCURONIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that include the 6-carboxy glucose structure. Glucosiduronates,Glucuronic Acids,Acids, Glucuronic
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D006497 Heparitin Sulfate A heteropolysaccharide that is similar in structure to HEPARIN. It accumulates in individuals with MUCOPOLYSACCHARIDOSIS. Heparan Sulfate,Sulfate, Heparan,Sulfate, Heparitin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015238 Sulfotransferases Enzymes which transfer sulfate groups to various acceptor molecules. They are involved in posttranslational sulfation of proteins and sulfate conjugation of exogenous chemicals and bile acids. EC 2.8.2. Sulfotransferase

Related Publications

X Bai, and J D Esko
January 1992, Advances in experimental medicine and biology,
X Bai, and J D Esko
January 2015, Analytical chemistry,
Copied contents to your clipboard!